Advertisement

Applied Biochemistry and Biotechnology

, Volume 160, Issue 4, pp 1074–1083 | Cite as

Depolymerization of Chitosan with a Crude Cellulase Preparation from Aspergillus Niger

  • Yu XieEmail author
  • Ya Wei
  • Jingang Hu
Article

Abstract

A crude cellulase preparation from Aspergillus niger was used to depolymerize chitosan. The depolymerization process was followed by measuring the apparent viscocity and the intrinsic viscosity. The optimum conditions for enzymatic hydrolysis were investigated. On the selected optimum conditions (pH 5.0, temperature 50 °C, and an enzyme to substrate ratio of 1:5), chitosan was hydrolyzed for 1, 4, 8, and 24 h, its viscosity-average molecular weights were 3.49 × 104, 1.18 × 104, 5.83 × 103, and 1.13 × 103, respectively. Compared with chitosan having viscosity-average molecular weight of 5.18 × 105 before enzymatic hydrolysis, the crude cellulase preparation had rather apparent effect on depolymerization of chitosan. Through the comparison of different origin of cellulases, the prepared cellulase has good ability of enzymatic hydrolysis. The reproducibility and reversibility for enzymatic hydrolysis was appraised. The data are of value for the production of low-molecular weight chitosans and chitooligomers of medical and biotechnological interest.

Keywords

Chitosan Depolymerization Enzymatic hydrolysis Molecular weight Viscometric feature 

Notes

Acknowledgements

The authors thank the financial support for this work of Jiangxi Provincial Department of Education (2007168) and Natural Science Foundation of Jiangxi Province (0620071). In addition, Nanchang Hangkong University is acknowledged.

References

  1. 1.
    Cheng, C. Y., & Li, Y. -K. (2000). Biotechnology and Applied Biochemistry, 32, 197–203. doi: 10.1042/BA20000063.CrossRefGoogle Scholar
  2. 2.
    Shibasali, K. I., Itoi, H., Matsukubo, T., & Takaesu, Y. (1992). Chitin derivatives in life sciences (pp. 25–29, 1st ed.). Sapporo: Japanese Society of Chitin.Google Scholar
  3. 3.
    Muzzarelh, R. A. A., & Giacomelli, G. (1987). Carbohydrate Polymers, 7, 87–97. doi: 10.1016/0144-8617(87)90051-8.CrossRefGoogle Scholar
  4. 4.
    Choi, W. -S., Ahn, K. -J., & Lee, D. -W. (2002). Polymer Degradation & Stability, 78, 533–538. doi: 10.1016/S0141-3910(02)00226-4.CrossRefGoogle Scholar
  5. 5.
    Muzzarelli, R. A. A. (1996). Carbohydrate Polymers, 29, 309–316. doi: 10.1016/S0144-8617(96)00033-1.CrossRefGoogle Scholar
  6. 6.
    Muzzarelli, R. A. A. (1997). Cellular and Molecular Life Sciences, 53, 131–140. doi: 10.1007/PL00000584.CrossRefGoogle Scholar
  7. 7.
    Skiak-Braek, G., Anthonsen, T., & Sandford, P. (Eds.). (1989). Chitin and chitosan. New York: Elsevier Applied Science.Google Scholar
  8. 8.
    Mattioli-Belmonte, M., Muzzarelli, B., & Muzzarelli, R. A. A. (1997). Carbohydr Europe, 19, 30–36.Google Scholar
  9. 9.
    Tokura, S., et al. (1996). New Macromolecular Architecture and Functions. Proceedings of the OUMS 95. (pp. 199–207). Toyonaka: Springer.Google Scholar
  10. 10.
    Li, Z., Liu, X. F., Yang, D. Z., et al. (2000). Progress in Chemical Industry, 6, 20–23.Google Scholar
  11. 11.
    Jeon, Y. J., & Kim, S. K. (2000). Carbohydrate Polymers, 41, 133–136. doi: 10.1016/S0144-8617(99)00084-3.CrossRefGoogle Scholar
  12. 12.
    Sashiwa, H., Fujishima, S., Yamano, N., & Kawasaki, N. (2001). Chemistry Letters, 308–312. doi: 10.1246/cl.2001.308.
  13. 13.
    Chen, R. H., et al. (1997). Carbohydrate Research, 299, 287–294. doi: 10.1016/S0008-6215(97)00019-0.CrossRefGoogle Scholar
  14. 14.
    Ilyina, A. V., Tikhonov, V. E., Albulov, A. I., et al. (2000). Process Biochemistry, 35, 563–568. doi: 10.1016/S0032-9592(99)00104-1.CrossRefGoogle Scholar
  15. 15.
    Pantaleone, D., Yalpani, M., & Scollar, M. (1992). Carbohydrate Research, 237, 325–332. doi: 10.1016/S0008-6215(92)84256-R.CrossRefGoogle Scholar
  16. 16.
    Izume, M., Nagae, S., Kawagishi, H., et al. (1992). Bioscience Biotechnology and Biochemistry, 56(8), 1327–1328.CrossRefGoogle Scholar
  17. 17.
    Jeon, Y. -J., & Kim, S. -K. (2000). Process Biochemistry, 35, 623–632. doi: 10.1016/S0032-9592(99)00118-1.CrossRefGoogle Scholar
  18. 18.
    Yalpani, M., & Pantaleone, D. (1994). Carbohydrate Research, 256, 159–175. doi: 10.1016/0008-6215(94)84235-3.CrossRefGoogle Scholar
  19. 19.
    Muraki, E., Yaku, F., & Kolima, H. (1993). Carbohydrate Research, 239, 227–237. doi: 10.1016/0008-6215(93)84217-T.CrossRefGoogle Scholar
  20. 20.
    Cappellini, R. A., & Peterson, J. L. (1965). Mycologia, 57, 962–966. doi: 10.2307/3756895.CrossRefGoogle Scholar
  21. 21.
    Wang, W., Bo, S. J., & Chen, W. (1990). Science in China. Series B Chemistry Life Sciences & Earth Sciences, 11, 1126–1128.Google Scholar
  22. 22.
    Yoshida, M. (1990). Bio/Technol, 8, 617–670.CrossRefGoogle Scholar
  23. 23.
    Esen, A. (1993). β-Glucosidase—Biochemistry and Molecular Biology. In A. Esen (ed.) American Chemical Society Symposium Series, 533, pp. 1–14.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.College of Environment and Chemical EngineeringNanchang Hangkong UniversityNanchangPeople’s Republic of China

Personalised recommendations