Applied Biochemistry and Biotechnology

, Volume 160, Issue 4, pp 1084–1093 | Cite as

Improved Production of Ethanol by Novel Genome Shuffling in Saccharomyces cerevisiae

  • Lihua HouEmail author


Fermentation properties under the control of multiple genes of industrial Saccharomyces cerevisiae strain are difficult to alter with traditional methods. Here, we describe efficient and reliable genome shuffling to increase ethanol production through the rapid improvement of stress resistance. The strategy is carried out using yeast sexual and asexual reproduction by itself instead of polyethylene glycol-mediated protoplast fusion. After three rounds of genome shuffling, the best performing strain S3-10 was obtained on the special plate containing a high ethanol concentration. It exhibits substantial improvement in multiple stress tolerance to ethanol, glucose, and heat. The cycle of fermentation of S3-10 was not only shortened, but also, ethanol yield was increased by up to 10.96% compared with the control in very-high-gravity (VHG) fermentations. In total, S3-10 possesses optimized fermentation characteristics, which will be propitious to the development of bioethanol fermentation industry.


Ethanol Genome shuffling Industrial strain Saccharomyces cerevisiae 



polyethylene glycol


ethyl methane sulfonate


colony-forming units


high-performance liquid chromatography


flow-cytometry analysis


very high gravity



The author particularly thanks Prof. P. Ma for constructive advice on this work. The research was supported by the National Natural Science Foundation of China (no. 30470849).


  1. 1.
    Steinmeta, L. M., Sinha, H., Richaeds, D. R., Spiegelman, J. I., Oefner, P. J., McCusker, J. H., et al. (2002). Dissecting the architecture of a quantitative trait locus in yeast. Nature, 416, 326–330. doi: 10.1038/416326a.CrossRefGoogle Scholar
  2. 2.
    Boulton, B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (1996). Yeast and biochemistry of ethanol fermentation. In B. Boulton, V. L. Singleton, L. F. Bisson, & R. E. Kunkee (Eds.), Principles and practices of winemaking (pp. 139–172). New York: Chapman and Hall.Google Scholar
  3. 3.
    Stephanopoulos, G. (2002). Metabolic engineering by genome shuffling. Nature Biotechnology, 20, 666–668. doi: 10.1038/nbt0702-666.CrossRefGoogle Scholar
  4. 4.
    Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 314, 1565–1568. doi: 10.1126/science.1131969.CrossRefGoogle Scholar
  5. 5.
    Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C., & Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646. doi: 10.1038/415644a.CrossRefGoogle Scholar
  6. 6.
    Patnaik, R., Louie, S., Gavrilovic, V., Stemmer, W. P. C., Ryan, C. M., & Cardayre, S. (2002). Genome shuffling of lactobacillus for improved acid tolerance. Nature Biotechnology, 20, 707–712. doi: 10.1038/nbt0702-707.CrossRefGoogle Scholar
  7. 7.
    Dai, M. H., & Copley, S. D. (2004). Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Applied and Environmental Microbiology, 70, 2391–2397. doi: 10.1128/AEM.70.4.2391-2397.2004.CrossRefGoogle Scholar
  8. 8.
    Hida, H., Yamada, T., & Yamada, Y. (2007). Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Applied Microbiology and Biotechnology, 73, 1387–1393. doi: 10.1007/s00253-006-0613-1.CrossRefGoogle Scholar
  9. 9.
    Wei, P., Li, Z., He, P., Lin, Y., & Jiang, N. (2008). Genome shuffling of ethanologenic yeast Candida krusei for improved acetic acid tolerance. Biotechnology and Applied Biochemistry, 49, 113–128. doi: 10.1042/BA20070072.CrossRefGoogle Scholar
  10. 10.
    Giudici, P., Solieri, L., Pulvirenti, A. M., & Cassanelli, S. (2005). Strategies and perspectives for genetic improvement of wine yeasts. Applied Microbiology and Biotechnology, 66, 622–628. doi: 10.1007/s00253-004-1784-2.CrossRefGoogle Scholar
  11. 11.
    Yu, L., Pei, X., Lei, T., Wang, Y., & Feng, Y. (2008). Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of lactobacillus rhamnosus. Journal of Biotechnology, 134, 154–159. doi: 10.1016/j.jbiotec.2008.01.008.CrossRefGoogle Scholar
  12. 12.
    Herman, P. K., & Rine, J. (1997). Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. The EMBO Journal, 16, 6171–6181. doi: 10.1093/emboj/16.20.6171.CrossRefGoogle Scholar
  13. 13.
    Kong, Q. X., Cao, L. M., Zhang, A. L., & Chen, X. (2007). Overexpressing GlT1 in gpd1Δ mutant to improve the production of ethanol of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 73, 1382–1386. doi: 10.1007/s00253-006-0610-4.CrossRefGoogle Scholar
  14. 14.
    Lawrence, C. W. (2004). Guide to yeast genetics and molecular and cell biology. Methods in enzymology Part A. Elesevier academic press NK, 194.Google Scholar
  15. 15.
    Houston, P., Simon, P. J., & Broach, J. R. (2004). The saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination. Genetics, 166, 1187–1197. doi: 10.1534/genetics.166.3.1187.CrossRefGoogle Scholar
  16. 16.
    Spencer, J. F. T., & Spencer, D. M. (1996). Yeast Protocols: Methods in Cell and Molecular Biology, Mutagenesis in yeast. 17–18.Google Scholar
  17. 17.
    Carlson, C. R., Grallert, B., Bernander, R., Stokke, T., & Boye, E. (1997). Measurement of nuclear DNA content in fission yeast by flow cytometry. Yeast (Chichester, England), 13, 1329–1335. doi: 10.1002/(SICI)1097-0061(199711)13:14<1329::AID-YEA185>3.0.CO;2-M.CrossRefGoogle Scholar
  18. 18.
    Ormerod, M. G., & Kubbies, M. (1992). Cell cycle analysis of asynchronous cells by flow cytometry using bromodeoxyuridine label and Hoechst-propidium iodide stain. Cytometry, 13, 678–685. doi: 10.1002/cyto.990130703.CrossRefGoogle Scholar
  19. 19.
    Rautio, J. J., Huuskonen, A., Vuokko, H., Vidgren, V., & Londesborough, J. (2007). Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast (Chichester, England), 24, 741–760. doi: 10.1002/yea.1510.CrossRefGoogle Scholar
  20. 20.
    Cardona, F., Carrasco, P., Perez-Ortin, J. E., Olmo, M., & Aranda, A. (2007). A novel approach for the improvement of stress resistance in wine yeasts. International Journal of Food Microbiology, 28, 83–91. doi: 10.1016/j.ijfoodmicro.2006.10.043.CrossRefGoogle Scholar
  21. 21.
    Jones, R. P. (1989). Biological principles for the effects of ethanol. Enzyme and Microbial Technology, 11, 130–153. doi: 10.1016/0141-0229(89)90073-2.CrossRefGoogle Scholar
  22. 22.
    Zhao, K., Ping, W., Zhang, L., Liu, J., Lin, Y., Jin, T., et al. (2008). Screening and breeding of high taxol producing fungi by genome shuffling. Science in China Series C-Life Sciences, 51, 222–231. doi: 10.1007/s11427-008-0037-5.CrossRefGoogle Scholar
  23. 23.
    Mayer, W. V., & Aguilera, A. (1990). High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutation Research, 231, 177–186. doi: 10.1016/0027-5107(90)90024-X.Google Scholar
  24. 24.
    Devantier, R., Pedersen, S., & Olsson, L. (2005). Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Applied Microbiology and Biotechnology, 68, 622–629. doi: 10.1007/s00253-005-1902-9.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Biochemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations