Hexavalent Chromium Reduction by Free and Immobilized Cell-free Extract of Arthrobacter rhombi-RE

Article

Abstract

In the present study, hexavalent chromium (Cr(VI)) reduction potential of chromium reductase associated with the cell-free extracts (CFE) of Arthrobacter rhombi-RE species was evaluated. Arthrobacter rhombi-RE, an efficient Cr(VI) reducing bacterium, was enriched and isolated from a chromium-contaminated site. Chromium reductase activity of Arthrobacter rhombi-RE strain was associated with the cell-free extract and the contribution of extracellular enzymes to Cr(VI) reduction was negligible. NADH enhanced the chromium reductase activity. The enzyme activity was optimal at a pH of 5.5 and a temperature of 30 °C. Among the ten electron donors screened, sodium pyruvate was the most effective one followed by NADH and propionic acid. Michaelis–Menten constant, Km, and maximum reaction rate, Vmax, obtained from the Lineweaver–Burk plot were 48 μM and 4.09 nM/mg protein/min, respectively, in presence of NADH as electron donor and 170.5 μM and 4.29 nM/mg protein/min, respectively, in presence of sodium pyruvate as electron donor. Ca2+ enhanced the enzyme activity while Hg2+, Cd2+, Ba2+, and Zn2+ inhibited the enzyme activity. Among the various immobilization matrices screened, calcium alginate beads seemed to be the most effective one. Though immobilized enzyme system was able to reduce Cr(VI), the performance was not very encouraging in continuous mode of operation.

Keywords

Arthrobacter rhombi-RE Chromium reductase Cr(VI) bioremediation Immobilized enzyme 

References

  1. 1.
    Alves, M. M., Ceca, C. G. G., Carvalho, R. G. D., Castanheira, J. M., Periera, M. C. S., & Vasconcelos, L. A. T. (1993). Water Research, 27, 1333–1338. doi:10.1016/0043-1354(93)90220-C.CrossRefGoogle Scholar
  2. 2.
    Shen, H., & Wang, Y. T. (1993). Applied and Environmental Microbiology, 59, 3771–3777.Google Scholar
  3. 3.
    Volesky, B., & Holan, Z. R. (1995). Biotechnology Progress, 11, 235–250. doi:10.1021/bp00033a001.CrossRefGoogle Scholar
  4. 4.
    Philip, L., Iyengar, L., & Venkobachar, C. (1998). Journal of Environmental Engineering, 124, 1165–1170. doi:10.1061/(ASCE)0733-9372(1998)124:12(1165).CrossRefGoogle Scholar
  5. 5.
    Guha, H., Jayachandran, K., & Maurrasse, F. (2001). Environmental Pollution, 115, 209–218. doi:10.1016/S0269-7491(01)00108-7.CrossRefGoogle Scholar
  6. 6.
    Schmieman, E. A., Yonge, D. R., Rege, M. A., Petersen, J. N., Turick, C. E., Johnstone, D. L., et al. (1998). Journal of Environmental Engineering, 124, 449–455. doi:10.1061/(ASCE)0733-9372(1998)124:5(449).CrossRefGoogle Scholar
  7. 7.
    Chirwa, E. N., & Wang, Y. T. (2000). Water Research, 34, 2376–2384. doi:10.1016/S0043-1354(99)00363-2.CrossRefGoogle Scholar
  8. 8.
    Smith, W. A., Apel, W. A., Petersen, J. N., & Peyton, B. M. (2002). Bioremediation Journal, 6, 205–215. doi:10.1080/10889860290777567.CrossRefGoogle Scholar
  9. 9.
    Wang, Y., & Xiao, C. (1995). Water Research, 29, 2467–2474. doi:10.1016/0043-1354(95)00093-Z.CrossRefGoogle Scholar
  10. 10.
    Chen, J. M., & Hao, O. J. (1997). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 69, 70–76. doi:10.1002/(SICI)1097-4660(199705)69:1<70::AID-JCTB665>3.0.CO;2-4.CrossRefGoogle Scholar
  11. 11.
    Philip, L., Iyengar, L., & Venkobachar, C. (1999). International Journal of Environment and Pollution, 11, 202–210. doi:10.1504/IJEP.1999.002258.CrossRefGoogle Scholar
  12. 12.
    Chirwa, E. N., & Wang, Y. T. (2001). Water Research, 35(8), 1921–1932. doi:10.1016/S0043-1354(00)00472-3.CrossRefGoogle Scholar
  13. 13.
    Dermou, E., Velissariou, A., Xenos, D., & Vayenas, D. V. (2007). Desalination, 211, 156–163. doi:10.1016/j.desal.2006.02.090.CrossRefGoogle Scholar
  14. 14.
    Zakaria, Z. A., Zakaria, Z., Surif, S., & Ahmad, W. A. (2007). Journal of Hazardous Materials, 148, 164–171. doi:10.1016/j.jhazmat.2007.02.029.CrossRefGoogle Scholar
  15. 15.
    Park, C. H., Keyhan, M., Wielinga, B., Fendorf, S., & Matin, A. (2000). Applied and Environmental Microbiology, 66, 1788–1795. doi:10.1128/AEM.66.5.1788-1795.2000.CrossRefGoogle Scholar
  16. 16.
    Camargo, F. A., Okeke, B. C., Bento, F. M., & Frankenberger, W. T. (2003). Applied Microbiology and Biotechnology, 62, 569–573. doi:10.1007/s00253-003-1291-x.CrossRefGoogle Scholar
  17. 17.
    Megharaj, M., Avudainayagam, S., & Naidu, R. (2004). Current Microbiology, 47, 51–54. doi:10.1007/s00284-002-3889-0.CrossRefGoogle Scholar
  18. 18.
    Bae, W. C., Lee, H. K., Choe, Y. C., Jahng, D. J., Lee, S. H., Kim, S. J., et al. (2005). Journal of Microbiology (Seoul, Korea), 43, 21–27.Google Scholar
  19. 19.
    Elangovan, R., Abipsha, S., Rohit, B., Philip, L., & Chandraraj, K. (2006). Biotechnology Letters, 28(4), 247–252. doi:10.1007/s10529-005-5526-z.CrossRefGoogle Scholar
  20. 20.
    Pal, A., Dutta, S., & Paul, A. K. (2005). Current Microbiology, 51, 327–330. doi:10.1007/s00284-005-0048-4.CrossRefGoogle Scholar
  21. 21.
    Garbisu, C., Alkorta, I., Llama, M. J., & Serra, J. L. (1998). Biodegradation, 9, 133–141. doi:10.1023/A:1008358816529.CrossRefGoogle Scholar
  22. 22.
    McLean, J., & Beveridge, T. J. (2001). Applied and Environmental Microbiology, 67, 1076–1084. doi:10.1128/AEM.67.3.1076-1084.2001.CrossRefGoogle Scholar
  23. 23.
    White, C. A., & Kennedy, J. F. (1985). In A. Wiseman (Ed.), Handbook of enzyme biotechnology pp. 147–380. Chichester: Horwood.Google Scholar
  24. 24.
    Munjal, N., & Sawhney, S. K. (2002). Enzyme and Microbial Technology, 30, 613–619. doi:10.1016/S0141-0229(02)00019-4.CrossRefGoogle Scholar
  25. 25.
    Mabbett, A. N., Yong, P., Farr, J. P. G., & Macaskie, L. E. (2004). Biotechnology and Bioengineering, 87, 104–109. doi:10.1002/bit.20105.CrossRefGoogle Scholar
  26. 26.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.Google Scholar
  27. 27.
    APHA (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.Google Scholar
  28. 28.
    Lovley, D. R., & Phillips, E. J. P. (1994). Applied and Environmental Microbiology, 60, 726–728.Google Scholar
  29. 29.
    Ishibashi, Y., Cervantes, C., & Silver, S. (1990). Applied and Environmental Microbiology, 56, 2268–2270.Google Scholar
  30. 30.
    Campos, J., Martinez-Pacheco, M., & Cervantes, C. (1995). Antonie Van Leeuwenhoek, 68, 203–208. doi:10.1007/BF00871816.CrossRefGoogle Scholar
  31. 31.
    Bopp, L. H., & Ehrlich, H. L. (1988). Archives of Microbiology, 150, 426–431. doi:10.1007/BF00422281.CrossRefGoogle Scholar
  32. 32.
    Wang, P. C., Mori, T., Toda, K., & Ohtake, H. (1990). Journal of Bacteriology, 172, 1670–1672.Google Scholar
  33. 33.
    Wang, P., Mori, T., Komori, K., Sasatsu, M., Toda, K., & Ohtake, H. (1989). Applied and Environmental Microbiology, 55, 1665–1669.Google Scholar
  34. 34.
    Bhinde, J. V., Dhakephalkar, P. K., & Paknikar, K. M. (1996). Biotechnology Letters, 18, 667–672. doi:10.1007/BF00130763.CrossRefGoogle Scholar
  35. 35.
    Farrell, S. O., & Ranallo, R. T. (2000). Experiments in biochemistry. a hands-on approach. Orlando: Saunders College Publications.Google Scholar
  36. 36.
    Losi, M. E., Amrhein, C., & Frankenberger, W. T. (1994). Reviews of Environmental Contamination and Toxicology, 36, 91–121.Google Scholar
  37. 37.
    Camargo, F. A., Bento, F. M., Okeke, B. C., & Frankenberger, W. T. (2004). Biological Trace Element Research, 97, 183–194. doi:10.1385/BTER:97:2:183.CrossRefGoogle Scholar
  38. 38.
    Hiraoka, B. Y., Fukasawa, K., & Harada, M. (1987). Molecular and Cellular Biochemistry, 73, 111–115. doi:10.1007/BF00219425.CrossRefGoogle Scholar
  39. 39.
    Kwak, Y. H., Lee, D. S., & Kim, H. B. (2003). Applied and Environmental Microbiology, 69, 4390–4395. doi:10.1128/AEM.69.8.4390-4395.2003.CrossRefGoogle Scholar
  40. 40.
    Opperman, D. J., Piater, L. A., & Heerden, E. V. (2008). Journal of Bacteriology, 8, 3076–3082.CrossRefGoogle Scholar
  41. 41.
    Birke, R. L., & Lombardi, J. R. (1988). In R. J. Gale (Ed.), Surface enhanced Raman scattering in spectroelectrochemistry: theory and practice. Plenum, New York.Google Scholar
  42. 42.
    Longo, M. A., Novella, I. S., García, L. A., & Díaz, M. (1992). Enzyme and Microbial Technology, 14, 586–590. doi:10.1016/0141-0229(92)90131-7.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of TechnologyChennaiIndia
  2. 2.Department of BiotechnologyIndian Institute of TechnologyChennaiIndia

Personalised recommendations