Thermophilic Bacillus coagulans Requires Less Cellulases for Simultaneous Saccharification and Fermentation of Cellulose to Products than Mesophilic Microbial Biocatalysts

  • Mark S. Ou
  • Nazimuddin Mohammed
  • L. O. Ingram
  • K. T. Shanmugam


Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g−1 cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g−1 cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.


Cellulase Cellulose SSF Bacillus coagulans Saccharomyces Zymomonas Lactic acid bacteria 



We thank A. P. Rooney for providing some of the strains used in this study, Genencor Intl. for the cellulase preparation and International Fiber Corp. for Solka Floc. This study was supported in part by a grant from the Department of Energy (DE-FG36-04GO14019) and the State of Florida, University of Florida Agricultural Experiment Station.


  1. 1.
    Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). DOE/GO-102005-2135.Google Scholar
  2. 2.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). NREL/TP-510-32438.Google Scholar
  3. 3.
    Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33. doi: 10.1016/0960-8524(95)00122-0.CrossRefGoogle Scholar
  4. 4.
    Kheshgi, H. S., Prince, R. C., & Marland, G. (2000). Annual Review of Energy and the Environment, 25, 199–244. doi: 10.1146/ Scholar
  5. 5.
    Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). Nature Biotechnology, 26, 169–172. doi: 10.1038/nbt0208-169.CrossRefGoogle Scholar
  6. 6.
    Wooley, R., Ruth, M., Glassner, D., & Sheehan, J. (1999). Biotechnology Progress, 15, 794–803. doi: 10.1021/bp990107u.CrossRefGoogle Scholar
  7. 7.
    Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157. doi: 10.1016/j.tibtech.2007.02.009.CrossRefGoogle Scholar
  8. 8.
    Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34. doi: 10.1007/s002530100624.CrossRefGoogle Scholar
  9. 9.
    Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287. doi: 10.1002/bit.260360310.CrossRefGoogle Scholar
  10. 10.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577. doi: 10.1128/MMBR.66.3.506-577.2002.CrossRefGoogle Scholar
  11. 11.
    Gauss, W. F., Suzuki, S., & Takagi, M. (1976). Manufacture of alcohol from cellulosic materials using plural ferments. United States patent 3,990,944.Google Scholar
  12. 12.
    Patel, M. A., Ou, M., Ingram, L. O., & Shanmugam, K. T. (2005). Biotechnology Progress, 21, 1453–1460. doi: 10.1021/bp0400339.CrossRefGoogle Scholar
  13. 13.
    Bothast, R. J., & Schlicher, M. A. (2005). Applied Microbiology and Biotechnology, 67, 19–25. doi: 10.1007/s00253-004-1819-8.CrossRefGoogle Scholar
  14. 14.
    Carr, F. J., Chill, D., & Maida, N. (2002). Critical Reviews in Microbiology, 28, 281–370. doi: 10.1080/1040-840291046759.CrossRefGoogle Scholar
  15. 15.
    Hofvendahl, K., & Hans-Hagerdal, B. (2000). Enzyme and Microbial Technology, 26, 87–107. doi: 10.1016/S0141-0229(99)00155-6.CrossRefGoogle Scholar
  16. 16.
    Martin, A. M. (1996). Fermentation processes for the production of lactic acid. In T. F. Bozoglu & B. Ray (Eds.), Lactic acid bacteria: Current advances in metabolism, genetics and applications, Vol. Nato ASI Series (vol. H98, (pp. 269–301)). New York: Springer.Google Scholar
  17. 17.
    Patel, M. A., Ou, M. S., Harbrucker, R., Aldrich, H. C., Buszko, M. L., Ingram, L. O., et al. (2006). Applied and Environmental Microbiology, 72, 3228–3235. doi: 10.1128/AEM.72.5.3228-3235.2006.CrossRefGoogle Scholar
  18. 18.
    Allen, M. B., & Arnon, D. I. (1955). Plant Physiology, 30, 366–372. doi: 10.1104/pp.30.4.366.CrossRefGoogle Scholar
  19. 19.
    Underwood, S. A., Buszko, M. L., Shanmugam, K. T., & Ingram, L. O. (2002). Applied and Environmental Microbiology, 68, 1071–1081. doi: 10.1128/AEM.68.3.1071-1081.2002.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Mark S. Ou
    • 1
  • Nazimuddin Mohammed
    • 1
  • L. O. Ingram
    • 1
  • K. T. Shanmugam
    • 1
  1. 1.Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleUSA

Personalised recommendations