Aspergillus fumigatus Thermophilic and Acidophilic Endoglucanases

  • A. L. Grigorevski-Lima
  • F. N. M. Da Vinha
  • D. T. Souza
  • A. S. R. Bispo
  • E. P. S. Bon
  • R. R. R. Coelho
  • R. P. Nascimento


This study evaluated the production of cellulolytic enzymes by an Aspergillus fumigatus strain, isolated from sugar cane bagasse, according to its ability to grow on microcrystalline cellulose as the sole carbon source. The effect of the carbon source (brewer’s spent grain, sugarcane bagasse, and wheat bran) and of the nitrogen source (corn steep liquor and sodium nitrate) on cellulase production was studied using submerged and solid state cultivations at 30 °C. The highest levels of endoglucanase (CMCase) corresponded to 365 U L-1 and was obtained using sugarcane bagasse (1%) and corn steep liquor (1.2%) in submerged fermentation within 6 days of cultivation. This supernatant was used to run a sodium dodecyl sulfate polyacrylamide gel electrophoresis that showed six bands with endoglucanase activity. CMCase activity was higher at 65 °C and pH 2.0, indicating that this microorganism produces a thermophilic and acid endoglucanase. Solid state cultivation favored FPase production, that reached 47 U g-1 of dry substrate (wheat bran and sugarcane bagasse) within 3 days.


Aspergillus fumigatus Thermophilic endoglucanase Acidophilic endoglucanase CMCase Agro-industrial by-products 



Authors are indebted to Marta de Sousa Ferreira for technical support and Fundação Oswaldo Cruz for identification of the fungal strain. This work was financially supported by CNPq and FINEP (project no 0106004700).


  1. 1.
    Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., et al. (2005). Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates—evidence for the role of accessory enzymes. Enzyme and Microbial Technology, 37, 175–184. doi: 10.1016/j.enzmictec.2005.01.039.CrossRefGoogle Scholar
  2. 2.
    Gregg, D. J., Boussaid, A., & Saddler, J. N. (1998). Techno-economic evaluations of a generic wood-to-ethanol process: effect of increased cellulose yields and enzyme recycle. Bioresource Technology, 63, 7–12. doi: 10.1016/S0960-8524(97)00103-X.CrossRefGoogle Scholar
  3. 3.
    Wingren, A., Galbe, M., & Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress, 19, 1109–1117. doi: 10.1021/bp0340180.CrossRefGoogle Scholar
  4. 4.
    Novozymes, NREL make further biomass-to-ethanol progress. In: Ethanol producer magazine. USA: BBI International; May 14, 2004.Google Scholar
  5. 5.
    Pothiraj, C., Balaji, P., & Eyini, M. (2006). Enhanced production of cellulases by various fungal cultures in solid state fermentation of cassava waste. African Journal of Biotechnology, 20, 1882–1885.Google Scholar
  6. 6.
    Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., et al. (1985). Genetic manipulation of Streptomyces. A laboratory manual. Norwich, UK: The John Innes Institute.Google Scholar
  7. 7.
    Miller, L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. doi: 10.1021/ac60147a030.CrossRefGoogle Scholar
  8. 8.
    Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268. doi: 10.1351/pac198759020257.CrossRefGoogle Scholar
  9. 9.
    Nascimento, R. P., Coelho, R. R. R., Marques, S., Alves, L., Gírio, F. M., Bon, E. P. S., et al. (2002). Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme and Microbial Technology, 31, 549–555. doi: 10.1016/S0141-0229(02)00150-3.CrossRefGoogle Scholar
  10. 10.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. doi: 10.1038/227680a0.CrossRefGoogle Scholar
  11. 11.
    Dahot, M. U., & Noomrio, M. H. (1996). Microbial production of cellulases by Aspergillus fumigatus using wheat straw as a carbon source. Journal of Islamic Academy of Sciences, 9, 119–124.Google Scholar
  12. 12.
    Hamilton, L. A., & Wase, J. (1991). Some comparisons of cellulases from two different strains of Aspergillus fumigatus. Process Biochemistry, 26, 287–292. doi: 10.1016/0032-9592(91)85016-H.CrossRefGoogle Scholar
  13. 13.
    Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technology, 99, 7623–7629.Google Scholar
  14. 14.
    Grigorevski-Lima, A. L., Nascimento, R. P., Bon, E. P. S., & Coelho, R. R. R. (2005). Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzyme and Microbial Technology, 37, 272–277. doi: 10.1016/j.enzmictec.2005.03.016.CrossRefGoogle Scholar
  15. 15.
    Azeredo, L. A. I., Lima, M. B., Coelho, R. R. R., & Freire, D. M. G. (2006). A low-cost fermentation medium for thermophilic protease production by Streptomyces sp. 594 using feather meal and corn steep liquor. Current Microbiology, 53, 335–339. doi: 10.1007/s00284-006-0163-x.CrossRefGoogle Scholar
  16. 16.
    Latifian, M., Esfahani-Hamidi, Z., & Barzegar, M. (2007). Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation. Bioresource Technology, 98, 3634–3637. doi: 10.1016/j.biortech.2006.11.019.CrossRefGoogle Scholar
  17. 17.
    Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Production of cellulases and hemicellulases by Aspergilus niger KK2 from lignocellulosic biomass. Bioresource Technology, 91, 153–156. doi: 10.1016/S0960-8524(03)00172-X.CrossRefGoogle Scholar
  18. 18.
    Aguiar, C. L. (2001). Biodegradation of the cellulose from sugar cane bagasse by fungal cellulase. Ciência e Tecnologia de Alimentos, 3, 117–121.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • A. L. Grigorevski-Lima
    • 1
  • F. N. M. Da Vinha
    • 1
  • D. T. Souza
    • 2
  • A. S. R. Bispo
    • 2
  • E. P. S. Bon
    • 3
  • R. R. R. Coelho
    • 1
  • R. P. Nascimento
    • 2
    • 4
  1. 1.Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Núcleo de Estudos em Microbiologia Aplicada (NEMA), Centro de Ciências Agrárias, Ambientais e BiológicasUniversidade Federal do Recôncavo da BahiaCruz das AlmasBrazil
  3. 3.Instituto de Química, Centro de TecnologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Universidade Federal do Recôncavo da BahiaCentro de Ciências Agrárias Ambientais e BiológicasCruz das AlmasBrazil

Personalised recommendations