Advertisement

Study on Mass Transfer of Isopropylbenzene and Oxygen in a Two-Phase Partitioning Bioreactor in the Presence of Silicone Oil

  • Jean-Marc AldricEmail author
  • Jean-Paul Lecomte
  • Philippe Thonart
Article

Abstract

A two-phase partitioning bioreactor to treat gas effluents polluted by volatile organic compound has been developed. In this work, both the mass transfer of isopropylbenzene (IPB) and oxygen have been considered in relation to their influence on the hydrodynamics of the reactor and the type of silicone oils used as a second phase. The synergistic effect of silicone oil and stirrer speed on the global oxygen mass transfer coefficient (K L a) and gas holdup (up to 12%) have been investigated. The addition of 10% of low viscosity silicone oil (10 cSt) in the reactor does not significantly affect the oxygen transfer rate. The very high solubility of IPB in the silicone oil leads to an enhancement of driving force term, especially for high fraction of silicone oil. However, it does not seem useful to exceed a volume fraction of 10% since K L a IPB decreases sharply at higher proportions of silicone oil. K L a IPB and K L a O2 evolve in the same way with the proportion of silicone oil. These results confirm the potentialities of our bioreactor to improve both the oxygen and pollutant gas transfer in the field of the treatment of gaseous pollutants, even for highly concentrated effluents.

Keywords

VOC Two-phase partitioning bioreactor Mass transfer enhancement Hydrodynamics Silicone oil 

Notes

Acknowledgments

The authors wish to acknowledge Dow-Corning Society and Ir. Omar Moumou for their participation in this work.

References

  1. 1.
    Budavari, S., O’Neil, M. J., Smith, A., & Heckelman, P. E. (1996). The Merck index: An encyclopedia of chemicals, drugs and biological. Whitehouse Station, NJ: Merck.Google Scholar
  2. 2.
    EPA (1996). Priority Pollutants, Code of Federal Regulations. Title 40, Part 423, Appendix A, USA, Chapter 1.Google Scholar
  3. 3.
    ASTDR (1997). Priority list of hazardous substances. Atlanta, USA: Agency of Toxic Substances and Disease Registry.Google Scholar
  4. 4.
    Van Groenestijn, J. W., & Kraakman, N. J. R. (2005). Chemical Engineering Journal, 113, 85–91. doi: 10.1016/j.cej.2005.03.007.CrossRefGoogle Scholar
  5. 5.
    Davidson, C. T., & Daugulis, A. J. (2003). Applied Microbiology and Biotechnology, 62, 297–301. doi: 10.1007/s00253-003-1298-3.CrossRefGoogle Scholar
  6. 6.
    Rene, E. R., Murthy, D. V. S., & Swaminathan, T. (2005). Process Biochemistry, 40, 2771–2779. doi: 10.1016/j.procbio.2004.12.010.CrossRefGoogle Scholar
  7. 7.
    Budwill, K., & Coleman, R. N. (1997). Mededelingen—Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent, 62, 1521–1528.Google Scholar
  8. 8.
    Cesário, M. T., Beverloo, W. A., Tramper, J., & Beeftink, H. H. (1997). Enzyme and Microbial Technology, 21, 578–588. doi: 10.1016/S0141-0229(97)00069-0.CrossRefGoogle Scholar
  9. 9.
    Daugulis, A. J. (2001). Trends in Biotechnology, 19, 457–460. doi: 10.1016/S0167-7799(01)01789-9.CrossRefGoogle Scholar
  10. 10.
    Muñoz, R., Villaverde, S., Guieysse, B., & Revah, S. (2007). Biotechnology Advances, 25, 410–422. doi: 10.1016/j.biotechadv.2007.03.005.CrossRefGoogle Scholar
  11. 11.
    Nielsen, D. R., Sask, K. N., McLellan, P. J., & Daugulis, A. J. (2006). Bioprocess and Biosystems Engineering, 29, 229–240. doi: 10.1007/s00449-006-0071-2.CrossRefGoogle Scholar
  12. 12.
    Muñoz, R., Arriaga, S., Hernández, S., Guieysse, B., & Revah, S. (2006). Process Biochemistry, 41, 1614–1619. doi: 10.1016/j.procbio.2006.03.007.CrossRefGoogle Scholar
  13. 13.
    Boudreau, N. G., & Daugulis, A. J. (2006). Biotechnology and Bioengineering, 94, 448–457. doi: 10.1002/bit.20876.CrossRefGoogle Scholar
  14. 14.
    Aldric, J. M., Destain, J., & Thonart, P. (2005). Applied Biochemistry and Biotechnology, 121-124, 707–720. doi: 10.1385/ABAB:122:1-3:0707.CrossRefGoogle Scholar
  15. 15.
    Daugulis, A. J., & Boudreau, N. G. (2003). Biotechnology Letters, 25, 1421–1424. doi: 10.1023/A:1025099427538.CrossRefGoogle Scholar
  16. 16.
    García-Peña, E. I., Hernandez, S., Favela-Torres, E., Auria, R., & Revah, S. (2001). Biotechnology and Bioengineering, 76, 61–69. doi: 10.1002/bit.1026.CrossRefGoogle Scholar
  17. 17.
    Jacobs, P., de Bo, I., Demeestere, K., Verstraete, W., & van Langenhove, H. (2004). Biotechnology and Bioengineering, 85, 68–77. doi: 10.1002/bit.10839.CrossRefGoogle Scholar
  18. 18.
    Arriaga, S., & Revah, S. (2005). Biotechnology and Bioengineering, 90, 107–115. doi: 10.1002/bit.20424.CrossRefGoogle Scholar
  19. 19.
    Djeribi, R., Dezenclos, T., Pauss, A., & Lebeault, J. M. (2005). Engineering in Life Sciences, 5, 450–457. doi: 10.1002/elsc.200520092.CrossRefGoogle Scholar
  20. 20.
    Dumont, E., & Delmas, H. (2003). Chemical Engineering and Processing, 42, 419–438. doi: 10.1016/S0255-2701(02)00067-3.CrossRefGoogle Scholar
  21. 21.
    Vrionis, H. A., Kropinsky, A. M., & Daugulis, A. J. (2002). Biotechnology and Bioengineering, 79, 587–594. doi: 10.1002/bit.10313.CrossRefGoogle Scholar
  22. 22.
    MacMillan, J. D., & Wang, D. I. C. (1990). Annals of the New York Academy of Sciences, 589, 283–300. doi: 10.1111/j.1749-6632.1990.tb24253.x.CrossRefGoogle Scholar
  23. 23.
    Mehta, V. D., & Sharma, M. M. (1971). Chemical Engineering Science, 26, 461–479. doi: 10.1016/0009-2509(71)83019-1.CrossRefGoogle Scholar
  24. 24.
    Rols, J. L., Condoret, J. S., Fonade, C., & Goma, G. (1990). Biotechnology and Bioengineering, 35, 427–435. doi: 10.1002/bit.260350410.CrossRefGoogle Scholar
  25. 25.
    Alliance of American Insurers (1987). Handbook of organic industrial solvents (6th ed.). Chicago: Alliance of American Insurers.Google Scholar
  26. 26.
    Nielsen, D. R., Daugulis, A. J., & McLellan, P. J. (2003). Biotechnology and Bioengineering, 83, 735–742. doi: 10.1002/bit.10721.CrossRefGoogle Scholar
  27. 27.
    Dumont, E., Andrès, Y., & Le Cloirec, P. (2006). Biochemical Engineering Journal, 28, 245–252. doi: 10.1016/j.bej.2006.05.003.CrossRefGoogle Scholar
  28. 28.
    Marcelis, C. L. M., van Leeuwen, M., Polderman, H. G., Janssen, A. J. H., & Lettinga, G. (2003). Biochemical Engineering Journal, 16, 253–264. doi: 10.1016/S1369-703X(03)00041-X.CrossRefGoogle Scholar
  29. 29.
    Roustan, M. Techniques de l’ingénieur, traité de génie des procédés. Doc. J 3 803.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Jean-Marc Aldric
    • 1
    Email author
  • Jean-Paul Lecomte
    • 2
  • Philippe Thonart
    • 1
  1. 1.Centre Wallon de Biologie Industrielle, Unité de Bio-industriesFaculté Universitaire des Sciences Agronomiques de GemblouxGemblouxBelgium
  2. 2.Dow Corning S.A.SeneffeBelgium

Personalised recommendations