Optimization of Biodiesel Production from Castor Oil Using Response Surface Methodology

Article

Abstract

The short supply of edible vegetable oils is the limiting factor in the progression of biodiesel technology; thus, in this study, we applied response surface methodology in order to optimize the reaction factors for biodiesel synthesis from inedible castor oil. Specifically, we evaluated the effects of multiple parameters and their reciprocal interactions using a five-level three-factor design. In a total of 20 individual experiments, we optimized the reaction temperature, oil-to-methanol molar ratio, and quantity of catalyst. Our model equation predicted that the following conditions would generate the maximum quantity of castor biodiesel (92 wt.%): a 40-min reaction at 35.5 °C, with an oil-to-methanol molar ratio of 1:8.24, and a catalyst concentration of 1.45% of KOH by weight of castor oil. Subsequent empirical analyses of the biodiesel generated under the predicted conditions showed that the model equation accurately predicted castor biodiesel yields within the tested ranges. The biodiesel produced from castor oil satisfied the relevant quality standards without regard to viscosity and cold filter plugging point.

Keywords

Castor oil Biodiesel Transesterification Optimization Response surface methodology Viscosity Alcohol solubility 

References

  1. 1.
    Mittelbach, M., & Remschmidt, C. (2004). Biodiesel—the comprehensive handbook (1st ed.). Austria: Boersedruck Ges.m.b.H.Google Scholar
  2. 2.
    Kim, H. R. (2002). Prospectives of Industrial Chemistry, 5, 27–34.Google Scholar
  3. 3.
    Jeong, G. T., & Park, D. H. (2006). Applied Biochemistry and Biotechnology, 129–132, 668–679. doi:10.1385/ABAB:131:1:668.CrossRefGoogle Scholar
  4. 4.
    Park, J. Y., Kim, D. K., Wang, Z. M., Lu, P., Park, S. C., & Lee, J. S. (2008). Applied Biochemistry and Biotechnology, 148, 109–117. doi:10.1007/s12010-007-8082-2.CrossRefGoogle Scholar
  5. 5.
    Lang, X., Dalai, A. K., Bakhshi, N. N., Reaney, M. J., & Hertz, P. B. (2001). Bioresource Technology, 80, 53–62. doi:10.1016/S0960-8524(01)00051-7.CrossRefGoogle Scholar
  6. 6.
    Ma, F., & Hanna, M. A. (1999). Bioresource Technology, 70, 1–15. doi:10.1016/S0960-8524(99)00025-5.CrossRefGoogle Scholar
  7. 7.
    Graboski, M. S., & McCormick, R. L. (1998). Progress in Energy and Combustion Science, 24, 125–164. doi:10.1016/S0360-1285(97)00034-8.CrossRefGoogle Scholar
  8. 8.
    Jeong, G. T., Oh, Y. T., & Park, D. H. (2006). Applied Biochemistry and Biotechnology, 129–132, 165–178. doi:10.1385/ABAB:129:1:165.CrossRefGoogle Scholar
  9. 9.
    Scholz, V., & Silva, J. N. (2007). Prospects and risks of the use of castor oil as a fuel. Biomass and Bioenergy, 32, 95–100. doi:10.1016/j.biombioe.2007.08.004.CrossRefGoogle Scholar
  10. 10.
    Ogunniyi, D. S. (2006). Bioresource Technology, 97, 1086–1091. doi:10.1016/j.biortech.2005.03.028.CrossRefGoogle Scholar
  11. 11.
    Meneghetti, S. M. P., Meneghetti, M. R., Wolf, C. R., Silva, E. C., Lima, G. E. S., Silva, L. L., et al. (2006). Energy & Fuels, 20, 2262–2265. doi:10.1021/ef060118m.CrossRefGoogle Scholar
  12. 12.
    Silva, N. D. L. D., Maciel, M. R. W. M., Batistella, C. B., & Filho, R. M. (2006). Applied Biochemistry and Biotechnology, 129–132, 405–414. doi:10.1385/ABAB:130:1:405.CrossRefGoogle Scholar
  13. 13.
    Oliveira, D., Luccio, M. D., Faccio, C., Rosa, C. D., Bender, J. P., Lipke, N., et al. (2005). Applied Biochemistry and Biotechnology, 121–124, 553–560. doi:10.1385/ABAB:122:1-3:0553.CrossRefGoogle Scholar
  14. 14.
    Meneghetti, S. M. P., Meneghetti, M. R., Serra, T. M., Barbosa, D. C., & Wolf, C. R. (2007). Energy & Fuels, 21(6), 3746–3747. doi:10.1021/ef070039q.CrossRefGoogle Scholar
  15. 15.
    Varma, M. N., & Madras, G. (2007). Industrial & Engineering Chemistry Research, 46(1), 1–6. doi:10.1021/ie0607043.CrossRefGoogle Scholar
  16. 16.
    Jeong, G. T., Kim, D. H., & Park, D. H. (2007). Applied Biochemistry and Biotechnology, 136–140, 583–594. doi:10.1007/s12010-007-9081-z.CrossRefGoogle Scholar
  17. 17.
    Jeong, G. T., Yang, H. S., & Park, D. H. (2009). Bioresource Technology, 100, 25–30. doi:10.1016/j.biortech.2008.05.011.CrossRefGoogle Scholar
  18. 18.
    Freedman, B., Pryde, E. H., & Mounts, T. L. (1984). Journal of the American Oil Chemists' Society, 61, 1683–1643.Google Scholar
  19. 19.
    Vicente, G., Coteron, M., Martinez, M., & Aracil, J. (1998). Industrial Crops and Products, 8, 29–35. doi:10.1016/S0926-6690(97)10003-6.CrossRefGoogle Scholar
  20. 20.
    Shieh, C. J., Liao, H. F., & Lee, C. C. (2003). Bioresource Technology, 88, 103–106. doi:10.1016/S0960-8524(02)00292-4.CrossRefGoogle Scholar
  21. 21.
    Shaw, J. F., Wu, H. Z., & Shieh, C. J. (2003). Food Chemistry, 81, 91–96. doi:10.1016/S0308-8146(02)00383-7.CrossRefGoogle Scholar
  22. 22.
    Korean Standard Association (2003). Animal and vegetable fats and oils analysis by gas chromatography of methyl esters of fatty acids (KS H ISO 5508). Geneva: ISO.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.School of Biological Sciences and Technology, Engineering Research Institute, Interdisciplinary Program of Graduate School for Bioenergy & BiomaterialsChonnam National UniversityGwangjuSouth Korea
  2. 2.School of Biological Sciences and Technology, Interdisciplinary Program of Graduate School for Bioenergy & Biomaterials, Biotechnology Research Institute, Institute of Bioindustrial Technology, Research Institute for Catalysis, Functional Food Research CenterChonnam National UniversityGwangjuSouth Korea

Personalised recommendations