Applied Biochemistry and Biotechnology

, Volume 153, Issue 1–3, pp 13–20

Butanol Tolerance in a Selection of Microorganisms

Article

Abstract

Butanol tolerance is a critical factor affecting the ability of microorganisms to generate economically viable quantities of butanol. Current Clostridium strains are unable to tolerate greater than 2% 1-butanol thus membrane or gas stripping technologies to actively remove butanol during fermentation are advantageous. To evaluate the potential of alternative hosts for butanol production, we screened 24 different microorganisms for their tolerance to butanol. We found that in general, a barrier to growth exists between 1% and 2% butanol and few microorganisms can tolerate 2% butanol. Strains of Escherichia coli, Zymomonas mobilis, and non-Saccharomyces yeasts were unable to surmount the 2% butanol growth barrier. Several strains of Saccharomyces cerevisiae exhibit limited growth in 2% butanol, while two strains of Lactobacillus were able to tolerate and grow in up to 3% butanol.

Keywords

Butanol Tolerance BioScreenC 

References

  1. 1.
    Schwarz, W. H., & Gapes, R. (2006). BioWorld Europe, 1, 16–19.Google Scholar
  2. 2.
    Zverlov, V. V., et al. (2006). Applied Microbiology and Biotechnology, 71, 587–597. doi:10.1007/s00253-006-0445-z.CrossRefGoogle Scholar
  3. 3.
    Qureshi, N., & Blaschek, H. P. (2001). Journal of Industrial Microbiology & Biotechnology, 27, 292–297. doi:10.1038/sj.jim.7000123.CrossRefGoogle Scholar
  4. 4.
    Tummala, S. B., Junne, S. G., & Papoutsakis, E. T. (2003). Journal of Bacteriology, 185(12), 3644–3653. doi:10.1128/JB.185.12.3644-3653.2003.CrossRefGoogle Scholar
  5. 5.
    Qureshi, N., Saha, B. C., & Cotta, M. A. (2007). Bioprocess and Biosystems Engineering, 30, 419–427. doi:10.1007/s00449-007-0137-9.CrossRefGoogle Scholar
  6. 6.
    Baer, S. H., Blaschek, H. P., & Smith, T. L. (1987). Applied and Environmental Microbiology, 53(12), 2854–2861.Google Scholar
  7. 7.
    Borden, J. R., & Papoutsakis, E. T. (2007). Applied and Environmental Microbiology, 73(9), 3061–3068. doi:10.1128/AEM.02296-06.CrossRefGoogle Scholar
  8. 8.
    Vollherbst-Schneck, K., Sands, J. A., & Montenecourt, B. S. (1984). Applied and Environmental Microbiology, 47(1), 193–194.Google Scholar
  9. 9.
    Lin, Y. L., & Blaschek, H. P. (1983). Applied and Environmental Microbiology, 45(3), 966–973.Google Scholar
  10. 10.
    Soucaille, P., et al. (1987). Current Microbiology, 14, 295–299. doi:10.1007/BF01568139.CrossRefGoogle Scholar
  11. 11.
    Scotcher, M. C., et al. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 414–420. doi:10.1007/s10295-003-0057-x.CrossRefGoogle Scholar
  12. 12.
    Scotcher, M. C., Rudolph, F. B., & Bennett, G. N. (2005). Applied and Environmental Microbiology, 71(4), 1987–1995. doi:10.1128/AEM.71.4.1987-1995.2005.CrossRefGoogle Scholar
  13. 13.
    Thormann, K., et al. (2002). Journal of Bacteriology, 184(7), 1966–1973. doi:10.1128/JB.184.7.1966-1973.2002.CrossRefGoogle Scholar
  14. 14.
    Zhao, Y., et al. (2005). Applied and Environmental Microbiology, 71(1), 530–537. doi:10.1128/AEM.71.1.530-537.2005.CrossRefGoogle Scholar
  15. 15.
    Durre, P. (1998). Applied Microbiology and Biotechnology, 49, 639–648. doi:10.1007/s002530051226.CrossRefGoogle Scholar
  16. 16.
    Atsumi, S., et al. . Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. (2008), doi:10.1016/j.ymben.2007.08.003.
  17. 17.
    Atsumi, S., Hanai, T., & Liao, J. C. (2008). Nature, 451(3), 87–90.Google Scholar
  18. 18.
    Couto, J. A., Pina, C., & Hogg, T. (1997). Biotechnology Letters, 19(5), 487–490. doi:10.1023/A:1018312714761.CrossRefGoogle Scholar
  19. 19.
    Antoce, O. A., et al. (1997). American Journal of Enology and Viticulture, 48(4), 413–422.Google Scholar
  20. 20.
    Luong, J. H. T. (1986). Biotechnology and Bioengineering, 29, 242–248. doi:10.1002/bit.260290215.CrossRefGoogle Scholar
  21. 21.
    Zhang, M., et al. (1995). Applied Biochemistry and Biotechnology, 51/52, 527–536. doi:10.1007/BF02933454.CrossRefGoogle Scholar
  22. 22.
    Desmond, C., et al. (2004). Applied and Environmental Microbiology, 70(10), 5929–5936. doi:10.1128/AEM.70.10.5929-5936.2004.CrossRefGoogle Scholar
  23. 23.
    Fiocco, D., et al. (2007). Applied Microbiology and Biotechnology, 77, 909–915. doi:10.1007/s00253-007-1228-x.CrossRefGoogle Scholar
  24. 24.
    Matsumoto, M., Mochiduki, K., & Kondo, K. (2004). Journal of Bioscience and Bioengineering, 98(5), 344–347.Google Scholar
  25. 25.
    Isken, S., & De Bont, J. A. (1998). Extremophiles, 2, 229–238. doi:10.1007/s007920050065.CrossRefGoogle Scholar
  26. 26.
    Jain, M. K., et al. (1978). Biochimica et Biophysica Acta, 509, 1–8. doi:10.1016/0005-2736(78)90002-0.CrossRefGoogle Scholar
  27. 27.
    Moreira, A. R., Ulmer, D. C., & Linden, J. C. (1981). Biotechnology and Bioengineering Symposium, 11, 567–579.Google Scholar
  28. 28.
    Bowles, L. K., & Ellefson, W. L. (1985). Applied and Environmental Microbiology, 50, 1165–1170.Google Scholar
  29. 29.
    Ingram, L. O. (1976). Journal of Bacteriology, 125, 670–678.Google Scholar
  30. 30.
    Ashe, M. P., et al. (2001). The EMBO Journal, 20(22), 6464–6474. doi:10.1093/emboj/20.22.6464.CrossRefGoogle Scholar
  31. 31.
    Ramos, J. L., et al. (2002). Annual Review of Microbiology, 56, 743–768.CrossRefGoogle Scholar
  32. 32.
    Weber, F. J., & de Bont, J. A. (1996). Biochimica et Biophysica Acta, 1286, 225–245.Google Scholar
  33. 33.
    Kabelitz, N., Santos, P. M., & Heipieper, H. J. (2003). FEMS Microbiology Letters, 220, 223–227. doi:10.1016/S0378-1097(03)00103-4.CrossRefGoogle Scholar
  34. 34.
    Isken, S., & Heipieper, H. J. (2002). Toxicity of organic solvents to microorganisms. In G. Bitton (Ed.), encyclopedia of environmental microbiology (vol. 6, (pp. 3147–3155)). New York: Wiley.Google Scholar
  35. 35.
    Kadam, K. L., & Schmidt, S. L. (1997). Applied Microbiology and Biotechnology, 48, 709–713. doi:10.1007/s002530051120.CrossRefGoogle Scholar
  36. 36.
    Barnett, J., Payne, R., & Yarrow, D. (2000). Yeasts: Characteristics and identification. Cambridge, UK: Cambridge University Press.Google Scholar
  37. 37.
    Kruse, B., & Schugerl, K. (1996). Process Biochemistry, 31(4), 389–407. doi:10.1016/0032-9592(95)00070-4.CrossRefGoogle Scholar
  38. 38.
    Ranatunga, T. D., et al. (1996). Biotechnology Letters, 19(11), 1125–1127. doi:10.1023/A:1018400912828.CrossRefGoogle Scholar
  39. 39.
    Slapack, G. E., Russell, I., & STewart, G. G. (1987). Thermophilic microbes in ethanol production. Boca Raton, FL: CRC.Google Scholar
  40. 40.
    Ziffer, J., & Iosif, M. I. (1982). Biotechnology Letters, 4(12), 809–814. doi:10.1007/BF00131158.CrossRefGoogle Scholar
  41. 41.
    Yamada, K., Ito, T., & Kobayashi, T. (1951). In H. Kyokai-Shi (Ed.), Selection of yeast by reuse, method., 9 pp. 176–179. Tokyo: Tokyo University.Google Scholar
  42. 42.
    Zayed, G. (1997). Journal of Industrial Microbiology & Biotechnology, 19, 39–42. doi:10.1038/sj.jim.2900413.CrossRefGoogle Scholar
  43. 43.
    Kunduru, M. R., & Pometto, A. (1996). Journal of Industrial Microbiology & Biotechnology, 16(4), 249–256.Google Scholar
  44. 44.
    Bowman, L., & Geiger, E. (1984). Biotechnology and Bioengineering, 26, 1492–1497. doi:10.1002/bit.260261214.CrossRefGoogle Scholar
  45. 45.
    Stevnsborg, N., & Lawford, H. G. (1986). Applied Microbiology and Biotechnology, 25(2), 106–115.Google Scholar
  46. 46.
    Mohagheghi, A., et al. (2004). Biotechnology Letters, 26, 321–325. doi:10.1023/B:BILE.0000015451.96737.96.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.National Renewable Energy LaboratoryNational Bioenergy CenterGoldenUSA

Personalised recommendations