Skip to main content
Log in

Dilute Acid Hydrolysis of Wheat Straw Oligosaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The dilute acid posthydrolysis of wheat straw hemicellulosic oligosaccharides obtained by autohydrolysis was evaluated. An empirical model was used to describe the effect of catalyst concentration (sulfuric acid, 0.1–4% w/w) and reaction time (0–60 min) based on data from a Doehlert experimental design. Catalyst concentration is the main variable influencing posthydrolysis performance, as both its linear and quadratic coefficients are statistically significant for the majority of the studied variables, namely, the ones related to sugar and byproducts production. Reaction time influences xylose and furan derivatives concentrations but not phenolics or acetic acid content. Catalyst concentration and reaction time interact synergistically, minimizing sugar recovery and promoting furan derivatives production. Based on the proposed models, it was possible to delimit an operational range that enables to obtain high monosaccharides recovery together with a slight decrease in inhibitors content as compared to the standard acid hydrolysis treatment. Furthermore, this is achieved with up to 70% less acid spending or considerable savings on reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., & Gírio, F. M. (2004). Bioresource Technology, 91, 93–100.

    Article  CAS  Google Scholar 

  2. Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Journal of Chemical Technology and Biotechnology, 74, 1101–1109.

    Article  CAS  Google Scholar 

  3. Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J., Laser, M., & Lynd, L. R. (2001). Industrial & Engineering Chemistry Research, 40, 2934–2941.

    Article  CAS  Google Scholar 

  4. Tuohy, K. M., Kolida, S., & Gibson, G. R. (2004). Agro Food Industry Hi-Tech, 15, 33–35.

    Google Scholar 

  5. Nabarlatz, D., Montané, D., Kardosova, A., Bekesova, S., Hribalova, V., & Ebringerova, A. (2007). Carbohydrate Research, 342, 1122–1128.

    Article  CAS  Google Scholar 

  6. Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Process Biochemistry, 41, 1913–1923.

    Article  CAS  Google Scholar 

  7. Saska, M., & Ozer, E. (1995). Biotechnology and Bioengineering, 45, 517–523.

    Article  CAS  Google Scholar 

  8. Allen, S. G., Kam, L. C., Zemann, A. J., & Antal, M. J. (1996). Industrial & Engineering Chemistry Research, 35, 2709–2715.

    Article  CAS  Google Scholar 

  9. Boussaid, A., Cai, Y. J., Robinson, J., Gregg, D. J., Nguyen, Q., & Saddler, J. N. (2001). Biotechnology Progress, 17, 887–892.

    Article  CAS  Google Scholar 

  10. Rivas, B., Domínguez, J. M., Domínguez, H., & Parajó, J. C. (2002). Enzyme and Microbial Technology, 31, 431–438.

    Article  CAS  Google Scholar 

  11. Shevchenko, S. M., Chang, K., Robinson, J., & Saddler, J. N. (2000). Bioresource Technology, 72, 207–211.

    Article  CAS  Google Scholar 

  12. Garrote, G., Domínguez, H., & Parajó, J. C. (2001). Bioresource Technology, 79, 155–164.

    Article  CAS  Google Scholar 

  13. Garrote, G., Domínguez, H., & Parajó, J. C. (2001). Applied Biochemistry and Biotechnology, 95, 195–207.

    Article  CAS  Google Scholar 

  14. Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajó, J. C., & Gírio, F. M. (2004). Applied Biochemistry and Biotechnology, 113–116, 1041–1058.

    Article  Google Scholar 

  15. Walch, E., Zemann, A., Schinner, F., Bonn, G., & Bobleter, O. (1992). Bioresource Technology, 39, 173–177.

    Article  CAS  Google Scholar 

  16. Vázquez, M. J., Alonso, J. L., Domínguez, H., & Parajó, J. C. (2001). World Journal of Microbiology & Biotechnology, 17, 817–822.

    Article  Google Scholar 

  17. Kabel, M. A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios, E., Parajó, J. C., et al. (2002). Carbohydrate Polymers, 50, 47–56.

    Article  CAS  Google Scholar 

  18. Pérez, J. A., González, A., Oliva, J. M., Ballesteros, I., & Manzanares, P. (2007). Journal of Chemical Technology and Biotechnology, 82, 929–938.

    Article  CAS  Google Scholar 

  19. Nabarlatz, D., Ebringerova, A., & Montané, D. (2007). Carbohydrate Polymers, 69, 20–28.

    Article  CAS  Google Scholar 

  20. Carvalheiro, F., Silva-Fernandes, T., Duarte, L. C., & Gírio, F. M. (2009). Applied Biochemistry and Biotechnology, in press. doi:10.1007/s12010-008-8448-0.

  21. Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London, A321, 523–536.

    Google Scholar 

  22. Montané, D., Overend, R. P., & Chornet, E. (1998). Canadian Journal of Chemical Engineering, 76, 58–68.

    Article  Google Scholar 

  23. Browning, B. L. (1967). Methods of wood chemistry. New York: Interscience.

    Google Scholar 

  24. Doehlert, D. H. (1970). Applied Statistics, 19, 231–239.

    Google Scholar 

  25. Graham, H. D. (1992). Journal of Agricultural and Food Chemistry, 40, 801–805.

    Article  CAS  Google Scholar 

  26. Duarte, L. C., Carvalheiro, F., Tadeu, J., & Gírio, F. M. (2006). Applied Biochemistry and Biotechnology, 129–132, 461–475.

    Article  Google Scholar 

  27. Duarte, L. C., Carvalheiro, F., Neves, I., & Gírio, F. M. (2005). Applied Biochemistry and Biotechnology, 121, 413–425.

    Article  Google Scholar 

  28. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gírio, F. M. (2005). Process Biochemistry, 40, 1215–1223.

    Article  CAS  Google Scholar 

  29. Felipe, M. G. A., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., & Mancilha, I. M. (1995). Journal of Basic Microbiology, 35, 171–177.

    Article  CAS  Google Scholar 

  30. Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hägerdal, B. (1999). Biotechnology and Bioengineering, 63, 46–55.

    Article  CAS  Google Scholar 

  31. Nigam, J. N. (2001). Journal of Biotechnology, 87, 17–27.

    Article  CAS  Google Scholar 

  32. Canilha, L., Carvalho, W., & Silva, J. B. A. (2005). World Journal of Microbiology & Biotechnology, 21, 1087–1093.

    Article  CAS  Google Scholar 

  33. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577.

    Article  CAS  Google Scholar 

  34. Silva-Fernandes, T., Duarte, L. C., Almeida, S., Carvalheiro, F., & Gírio, F. M. (2008). Identification of the most relevant factors affecting xylitol production by D. hansenii from wheat straw hydrolysates. Proceedings of the “Bioenergy: Challenges and Opportunities—International Conference and Exhibition on Bioenergy”. II, pp 179–184. Guimarães, Portugal, Universidade do Minho, 6–4–2008.

Download references

Acknowledgments

Authors are grateful to Fundação para a Ciência e a Tecnologia (FCT) for the financial support of this work (project BIOREFINO PTDC/AGR-AAM/71533/2006). Talita Silva-Fernandes gratefully acknowledges the grant funded by CEBio (Prime-IDEIA-AdI Projecto no. 70/00326). The authors thank J. C. Roseiro for the helpful discussions and Amélia Marques, Carlos Barata, and Céu Penedo for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís C. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, L.C., Silva-Fernandes, T., Carvalheiro, F. et al. Dilute Acid Hydrolysis of Wheat Straw Oligosaccharides. Appl Biochem Biotechnol 153, 116–126 (2009). https://doi.org/10.1007/s12010-008-8426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8426-6

Keywords

Navigation