Dilute Acid Hydrolysis of Wheat Straw Oligosaccharides

  • Luís C. DuarteEmail author
  • Talita Silva-Fernandes
  • Florbela Carvalheiro
  • Francisco M. Gírio


The dilute acid posthydrolysis of wheat straw hemicellulosic oligosaccharides obtained by autohydrolysis was evaluated. An empirical model was used to describe the effect of catalyst concentration (sulfuric acid, 0.1–4% w/w) and reaction time (0–60 min) based on data from a Doehlert experimental design. Catalyst concentration is the main variable influencing posthydrolysis performance, as both its linear and quadratic coefficients are statistically significant for the majority of the studied variables, namely, the ones related to sugar and byproducts production. Reaction time influences xylose and furan derivatives concentrations but not phenolics or acetic acid content. Catalyst concentration and reaction time interact synergistically, minimizing sugar recovery and promoting furan derivatives production. Based on the proposed models, it was possible to delimit an operational range that enables to obtain high monosaccharides recovery together with a slight decrease in inhibitors content as compared to the standard acid hydrolysis treatment. Furthermore, this is achieved with up to 70% less acid spending or considerable savings on reaction time.


Autohydrolysis Dilute acid posthydrolysis Experimental design Hemicellulosic hydrolyzate Wheat straw Xylooligosaccharides 



Authors are grateful to Fundação para a Ciência e a Tecnologia (FCT) for the financial support of this work (project BIOREFINO PTDC/AGR-AAM/71533/2006). Talita Silva-Fernandes gratefully acknowledges the grant funded by CEBio (Prime-IDEIA-AdI Projecto no. 70/00326). The authors thank J. C. Roseiro for the helpful discussions and Amélia Marques, Carlos Barata, and Céu Penedo for their technical support.


  1. 1.
    Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., & Gírio, F. M. (2004). Bioresource Technology, 91, 93–100.CrossRefGoogle Scholar
  2. 2.
    Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Journal of Chemical Technology and Biotechnology, 74, 1101–1109.CrossRefGoogle Scholar
  3. 3.
    Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J., Laser, M., & Lynd, L. R. (2001). Industrial & Engineering Chemistry Research, 40, 2934–2941.CrossRefGoogle Scholar
  4. 4.
    Tuohy, K. M., Kolida, S., & Gibson, G. R. (2004). Agro Food Industry Hi-Tech, 15, 33–35.Google Scholar
  5. 5.
    Nabarlatz, D., Montané, D., Kardosova, A., Bekesova, S., Hribalova, V., & Ebringerova, A. (2007). Carbohydrate Research, 342, 1122–1128.CrossRefGoogle Scholar
  6. 6.
    Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Process Biochemistry, 41, 1913–1923.CrossRefGoogle Scholar
  7. 7.
    Saska, M., & Ozer, E. (1995). Biotechnology and Bioengineering, 45, 517–523.CrossRefGoogle Scholar
  8. 8.
    Allen, S. G., Kam, L. C., Zemann, A. J., & Antal, M. J. (1996). Industrial & Engineering Chemistry Research, 35, 2709–2715.CrossRefGoogle Scholar
  9. 9.
    Boussaid, A., Cai, Y. J., Robinson, J., Gregg, D. J., Nguyen, Q., & Saddler, J. N. (2001). Biotechnology Progress, 17, 887–892.CrossRefGoogle Scholar
  10. 10.
    Rivas, B., Domínguez, J. M., Domínguez, H., & Parajó, J. C. (2002). Enzyme and Microbial Technology, 31, 431–438.CrossRefGoogle Scholar
  11. 11.
    Shevchenko, S. M., Chang, K., Robinson, J., & Saddler, J. N. (2000). Bioresource Technology, 72, 207–211.CrossRefGoogle Scholar
  12. 12.
    Garrote, G., Domínguez, H., & Parajó, J. C. (2001). Bioresource Technology, 79, 155–164.CrossRefGoogle Scholar
  13. 13.
    Garrote, G., Domínguez, H., & Parajó, J. C. (2001). Applied Biochemistry and Biotechnology, 95, 195–207.CrossRefGoogle Scholar
  14. 14.
    Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajó, J. C., & Gírio, F. M. (2004). Applied Biochemistry and Biotechnology, 113–116, 1041–1058.CrossRefGoogle Scholar
  15. 15.
    Walch, E., Zemann, A., Schinner, F., Bonn, G., & Bobleter, O. (1992). Bioresource Technology, 39, 173–177.CrossRefGoogle Scholar
  16. 16.
    Vázquez, M. J., Alonso, J. L., Domínguez, H., & Parajó, J. C. (2001). World Journal of Microbiology & Biotechnology, 17, 817–822.CrossRefGoogle Scholar
  17. 17.
    Kabel, M. A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios, E., Parajó, J. C., et al. (2002). Carbohydrate Polymers, 50, 47–56.CrossRefGoogle Scholar
  18. 18.
    Pérez, J. A., González, A., Oliva, J. M., Ballesteros, I., & Manzanares, P. (2007). Journal of Chemical Technology and Biotechnology, 82, 929–938.CrossRefGoogle Scholar
  19. 19.
    Nabarlatz, D., Ebringerova, A., & Montané, D. (2007). Carbohydrate Polymers, 69, 20–28.CrossRefGoogle Scholar
  20. 20.
    Carvalheiro, F., Silva-Fernandes, T., Duarte, L. C., & Gírio, F. M. (2009). Applied Biochemistry and Biotechnology, in press. doi: 10.1007/s12010-008-8448-0.
  21. 21.
    Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London, A321, 523–536.Google Scholar
  22. 22.
    Montané, D., Overend, R. P., & Chornet, E. (1998). Canadian Journal of Chemical Engineering, 76, 58–68.CrossRefGoogle Scholar
  23. 23.
    Browning, B. L. (1967). Methods of wood chemistry. New York: Interscience.Google Scholar
  24. 24.
    Doehlert, D. H. (1970). Applied Statistics, 19, 231–239.Google Scholar
  25. 25.
    Graham, H. D. (1992). Journal of Agricultural and Food Chemistry, 40, 801–805.CrossRefGoogle Scholar
  26. 26.
    Duarte, L. C., Carvalheiro, F., Tadeu, J., & Gírio, F. M. (2006). Applied Biochemistry and Biotechnology, 129–132, 461–475.CrossRefGoogle Scholar
  27. 27.
    Duarte, L. C., Carvalheiro, F., Neves, I., & Gírio, F. M. (2005). Applied Biochemistry and Biotechnology, 121, 413–425.CrossRefGoogle Scholar
  28. 28.
    Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gírio, F. M. (2005). Process Biochemistry, 40, 1215–1223.CrossRefGoogle Scholar
  29. 29.
    Felipe, M. G. A., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., & Mancilha, I. M. (1995). Journal of Basic Microbiology, 35, 171–177.CrossRefGoogle Scholar
  30. 30.
    Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hägerdal, B. (1999). Biotechnology and Bioengineering, 63, 46–55.CrossRefGoogle Scholar
  31. 31.
    Nigam, J. N. (2001). Journal of Biotechnology, 87, 17–27.CrossRefGoogle Scholar
  32. 32.
    Canilha, L., Carvalho, W., & Silva, J. B. A. (2005). World Journal of Microbiology & Biotechnology, 21, 1087–1093.CrossRefGoogle Scholar
  33. 33.
    Bjerre, A. B., Olesen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577.CrossRefGoogle Scholar
  34. 34.
    Silva-Fernandes, T., Duarte, L. C., Almeida, S., Carvalheiro, F., & Gírio, F. M. (2008). Identification of the most relevant factors affecting xylitol production by D. hansenii from wheat straw hydrolysates. Proceedings of the “Bioenergy: Challenges and Opportunities—International Conference and Exhibition on Bioenergy”. II, pp 179–184. Guimarães, Portugal, Universidade do Minho, 6–4–2008.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Luís C. Duarte
    • 1
    Email author
  • Talita Silva-Fernandes
    • 1
  • Florbela Carvalheiro
    • 1
  • Francisco M. Gírio
    • 1
  1. 1.Departamento de BiotecnologiaINETILisboaPortugal

Personalised recommendations