Advertisement

Applied Biochemistry and Biotechnology

, Volume 153, Issue 1–3, pp 151–162 | Cite as

Sweet Sorghum as Feedstock for Ethanol Production: Enzymatic Hydrolysis of Steam-Pretreated Bagasse

  • Bálint SiposEmail author
  • Jutka Réczey
  • Zsolt Somorai
  • Zsófia Kádár
  • Dóra Dienes
  • Kati Réczey
Article

Abstract

Sweet sorghum is an attractive feedstock for ethanol production. The juice extracted from the fresh stem is composed of sucrose, glucose, and fructose and can therefore be readily fermented to alcohol. The solid fraction left behind, the so-called bagasse, is a lignocellulosic residue which can also be processed to ethanol. The objective of our work was to test sweet sorghum, the whole crop, as a potential raw material of ethanol production, i.e., both the extracted sugar juice and the residual bagasse were tested. The juice was investigated at different harvesting dates for sugar content. Fermentability of juices extracted from the stem with and without leaves was compared. Sweet sorghum bagasse was steam-pretreated using various pretreatment conditions (temperatures and residence times). Efficiency of pretreatments was characterized by the degree of cellulose hydrolysis of the whole pretreated slurry and the separated fiber fraction. Two settings of the studied conditions (190 °C, 10 min and 200 °C, 5 min) were found to be efficient to reach conversion of 85–90%.

Keywords

Sweet sorghum Ethanol fermentation Lignocellulose Steam pretreatment Enzymatic hydrolysis 

Notes

Acknowledgment

This work was financially supported by National Research and Development Programs (NKFP OM00152/2005) and the Hungarian National Research Fund (OTKA–K 72710). Guido Zacchi is gratefully acknowledged for the possibility of steam pretreatment. Enzymes were kindly donated by Novozymes A/S (Bagsvaerd, Denmark). Research Institute, Karcag is acknowledged for the sweet sorghum samples.

References

  1. 1.
    Negro, M. J., Solano, M. L., Ciria, P., & Carrasco, J. (1999). Bioresource Technology, 67, 89–92. doi: 10.1016/S0960-8524(99)00100-5.CrossRefGoogle Scholar
  2. 2.
    Sree, N. K., Sridhar, M., Rao, L. V., & Pandey, A. (1999). Process Biochemistry, 34, 115–119. doi: 10.1016/S0032-9592(98)00074-0.CrossRefGoogle Scholar
  3. 3.
    Worley, J. W., Vaughan, D. H., & Cundiff, J. S. (1992). Bioresource Technology, 40, 263–273. doi: 10.1016/0960-8524(92)90153-O.CrossRefGoogle Scholar
  4. 4.
    Gnansounou, E., Dauriat, A., & Wyman, C. (2005). Bioresource Technology, 96, 985–1002. doi: 10.1016/j.biortech.2004.09.015.CrossRefGoogle Scholar
  5. 5.
    Laopaiboon, L., Thanonkeo, P., Jaisil, P., & Laopaiboon, P. (2007). World Journal of Microbiology & Biotechnology, 23, 1497–1501. doi: 10.1007/s11274-007-9383-x.CrossRefGoogle Scholar
  6. 6.
    Antonopoulou, G., Gavala, H. N., Skiadas, I. V., Angelopoulos, K., & Lyberatos, G. (2008). Bioresource Technology, 99, 110–119. doi: 10.1016/j.biortech.2006.11.048.CrossRefGoogle Scholar
  7. 7.
    Schmidt, J., Sipocz, J., Kaszás, I., Szakács, G., Gyepes, A., & Tengerdy, R. P. (1997). Bioresource Technology, 60, 9–13. doi: 10.1016/S0960-8524(97)00003-5.CrossRefGoogle Scholar
  8. 8.
    Monti, A., & Venturi, G. (2003). European Journal of Agronomy, 19, 35–43. doi: 10.1016/S1161-0301(02)00017-5.CrossRefGoogle Scholar
  9. 9.
    Monti, A., Di Virgilio, N., & Venturi, G. (2008). Biomass and Bioenergy, 32, 216–223. doi: 10.1016/j.biombioe.2007.09.012.CrossRefGoogle Scholar
  10. 10.
    Belayachi, L., & Delmas, M. (1997). Industrial Crops and Products, 6, 229–232. doi: 10.1016/S0926-6690(97)00012-5.CrossRefGoogle Scholar
  11. 11.
    Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., Larsson, S., Stenberg, K., Szengyel, Z., et al. (1996). Bioresource Technology, 58, 171–179. doi: 10.1016/S0960-8524(96)00096-X.CrossRefGoogle Scholar
  12. 12.
    Martin, C., Galbe, M., Wahlbom, C. F., Hahn-Hägerhahl, B., & Jönsson, L. J. (2002). Enzyme and Microbial Technology, 31, 274–282. doi: 10.1016/S0141-0229(02)00112-6.CrossRefGoogle Scholar
  13. 13.
    Sluiter, A. (2006). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Protocol, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  14. 14.
    Sluiter, A. (2005). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory Analytical Protocol, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  15. 15.
    Veiga, M. C., Soto, M., Méndez, M., & Lema, J. M. (1990). Water Research, 24, 1551–1554. doi: 10.1016/0043-1354(90)90090-S.CrossRefGoogle Scholar
  16. 16.
    Mandels, M., Andreotti, R., & Roche, C. (1976). Biotechnology and Bioengineering Symposium, 6, 21–33.Google Scholar
  17. 17.
    Berghem, L. E. R., & Pettersson, G. (1974). European Journal of Biochemistry, 46, 295–305. doi: 10.1111/j.1432-1033.1974.tb03621.x.CrossRefGoogle Scholar
  18. 18.
    Hoffmann-Thoma, G., Hinkel, K., Nicolay, P., & Willenbrink, J. (1996). Physiologia Plantarum, 97, 277–284. doi: 10.1034/j.1399-3054.1996.970210.x.CrossRefGoogle Scholar
  19. 19.
    Amaducci, S., Monti, A., & Venturi, G. (2004). Industrial Crops and Products, 20, 111–118. doi: 10.1016/j.indcrop.2003.12.016.CrossRefGoogle Scholar
  20. 20.
    Kresovich, S., & Henderlong, P. R. (1984). Energia na Agricultura, 3, 145–153. doi: 10.1016/0167-5826(84)90017-2.CrossRefGoogle Scholar
  21. 21.
    Overland, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences, 321, 523–536. doi: 10.1098/rsta.1987.0029.CrossRefGoogle Scholar
  22. 22.
    Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848. doi: 10.1016/j.procbio.2003.09.011.CrossRefGoogle Scholar
  23. 23.
    Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33. doi: 10.1016/S0960-8524(99)00161-3.CrossRefGoogle Scholar
  24. 24.
    Ramos, L. P. (2003). Quimica Nova, 26, 863–871.Google Scholar
  25. 25.
    Szengyel, Z., Zacchi, G., & Réczey, K. (1997). Applied Biochemistry and Biotechnology, 63–65, 351–362. doi: 10.1007/BF02920437.CrossRefGoogle Scholar
  26. 26.
    Kötter, P., & Ciriacy, M. (1993). Applied Microbiology and Biotechnology, 38, 776–783. doi: 1007/BF00167144.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Bálint Sipos
    • 1
    Email author
  • Jutka Réczey
    • 1
  • Zsolt Somorai
    • 1
  • Zsófia Kádár
    • 2
  • Dóra Dienes
    • 1
  • Kati Réczey
    • 1
  1. 1.Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Pólus Plus Co.BudapestHungary

Personalised recommendations