Advertisement

Applied Biochemistry and Biotechnology

, Volume 158, Issue 2, pp 457–469 | Cite as

Biosorption of Lead, Copper, and Cadmium by Phanerochaete chrysosporium in Ternary Metal Mixtures: Statistical Analysis of Individual and Interaction Effects

  • K. PakshirajanEmail author
  • T. Swaminathan
Article

Abstract

Biosorption of three divalent metals, viz., lead, copper, and cadmium in ternary aqueous mixtures was studied using Phanerochaete chrysosporium in batch shake flasks. The mixtures were prepared containing the metals at their either varying optimum or equal initial concentration combinations in aqueous solution of pH optimum to each of the metals. Following were the optimum initial concentration ranges of the metals in mixture: lead, 60–100 mg/L; copper, 20–60 mg/L; and cadmium, 5–15 mg/L. And, for varying these optimum concentration levels of the metals, a 23 full factorial design of experiments was employed. The results revealed that an increase in lead and cadmium concentrations helped in their better biosorption by the fungus, but an increase in initial copper concentration slightly diminished its removal. Statistical analysis of the results in the form of analysis of variance and Student t test gave a clear interpretation on the roles of both the individual metals and their interactions in the uptake of metals from mixture. Compared to the uptake of metals when presented individually, lead biosorption in mixture was found to be enhanced to a degree as high as 99%; on the other hand, copper and cadmium removals from mixtures were inhibited to the extent of 100% and 98%, respectively. However, this extent of inhibition or enhancement in the metal removals compared to the individual removals was less in mixtures containing all equal concentrations of the metals.

Keywords

Biosorption Phanerochaete chrysosporium Heavy metals Ternary metal mixture Full factorial design of experiments ANOVA 

References

  1. 1.
    Chong, K. H., & Volesky, B. (1995). Biotechnology and Bioengineering, 47, 451–460. doi: 10.1002/bit.260470406.CrossRefGoogle Scholar
  2. 2.
    Kapoor, A., & Viraraghavan, T. (1995). Bioresource Technology, 53, 195–206. doi: 10.1016/0960-8524(95)00072-1.CrossRefGoogle Scholar
  3. 3.
    Tsezos, M., Remoudaki, E., & Angelatou, V. (1996). International Biodeterioration & Biodegradation, 38, 19–29. doi: 10.1016/S0964-8305(96)00011-X.CrossRefGoogle Scholar
  4. 4.
    Brady, J. M., & Tobin, J. M. (1995). Enzyme and Microbial Technology, 17, 791–796. doi: 10.1016/0141-0229(95)00142-R.CrossRefGoogle Scholar
  5. 5.
    Cabral, J. P. S. (1992). Microbios, 71, 47–53.Google Scholar
  6. 6.
    Ansari, M. I., & Malik, A. (2007). Bioresource Technology, 98, 3149–3153. doi: 10.1016/j.biortech.2006.10.008.CrossRefGoogle Scholar
  7. 7.
    Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K. (2007). Journal of Hazardous Materials, 146, 270–277. doi: 10.1016/j.jhazmat.2006.12.017.CrossRefGoogle Scholar
  8. 8.
    Leung, W. C., Chua, H., & Lo, W. (2001). Applied Biochemistry and Biotechnology, 91–93, 171–184. doi: 10.1385/ABAB:91-93:1-9:171.CrossRefGoogle Scholar
  9. 9.
    Murugesan, G. S., Sathishkumar, M., & Swaminathan, K. (2006). Bioresource Technology, 97, 483–487. doi: 10.1016/j.biortech.2005.03.008.CrossRefGoogle Scholar
  10. 10.
    Melgar, M. J., Alonso, J., & García, M. A. (2007). The Science of the Total Environment, 385, 12–19. doi: 10.1016/j.scitotenv.2007.07.011.CrossRefGoogle Scholar
  11. 11.
    Płaza, G., Łukasik, W., & Ulfig, K. (1996). Sorption of cadmium by filamentous soil fungi. Acta Microbiologica Polonica, 45, 193–201.Google Scholar
  12. 12.
    Aksu, Z., & Karabayır, G. (2008). Bioresource Technology, 99, 7730–7741. doi: 10.1016/j.biortech.2008.01.056.CrossRefGoogle Scholar
  13. 13.
    Preetha, B., & Viruthagiri, T. (2007). Separation and Purification Technology, 57, 126–133. doi: 10.1016/j.seppur.2007.03.015.CrossRefGoogle Scholar
  14. 14.
    Naja, G., Mustin, C., Berthelin, J., & Volesky, B. (2005). Journal of Colloid and Interface Science, 292, 537–543. doi: 10.1016/j.jcis.2005.05.098.CrossRefGoogle Scholar
  15. 15.
    Mukhopadhyay, M. (2008). Colloids and Surfaces A: Physicochemical and Engineering Aspects, in press.Google Scholar
  16. 16.
    Mungasavalli, D. P., Viraraghavan, T., & Jin, Y. C. (2007). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301, 214–223. doi: 10.1016/j.colsurfa.2006.12.060.CrossRefGoogle Scholar
  17. 17.
    Gopal, M., Pakshirajan, K., & Swaminathan, T. (2002). Applied Biochemistry and Biotechnology, 102(1–3), 227–237. doi: 10.1385/ABAB:102-103:1-6:227.CrossRefGoogle Scholar
  18. 18.
    Puranik, P. R., & Paknikar, K. M. (1999). Bioresource Technology, 70, 269–276. doi: 10.1016/S0960-8524(99)00037-1.CrossRefGoogle Scholar
  19. 19.
    Ting, Y. P., & Teo, W. K. (1994). Bioresource Technology, 50, 113–117. doi: 10.1016/0960-8524(94)90062-0.CrossRefGoogle Scholar
  20. 20.
    Montgomery, D. C. (2004). Design and analysis of experiments (6th ed.). New York: Wiley.Google Scholar
  21. 21.
    Xie, F., Lin, X., Wu, X., & Xie, Z. (2008). Talanta, 74, 836–843. doi: 10.1016/j.talanta.2007.07.018.CrossRefGoogle Scholar
  22. 22.
    Amini, M., Younesi, H., Bahramifar, N., Lorestani, A. A. Z., Ghorbani, F., & Daneshi, A. (2008). Journal of Hazardous Materials, 154, 694–702. doi: 10.1016/j.jhazmat.2007.10.114.CrossRefGoogle Scholar
  23. 23.
    Ghorbani, F., Younesi, H., Ghasempouri, S. M., Zinatizadeh, A. A., Amini, M., & Daneshi, A. (2008). Chemical Engineering Journal, in press.Google Scholar
  24. 24.
    Lu, W. B., Kao, W. C., Shi, J. J., & Chang, J. S. (2008). Journal of Hazardous Materials, 153, 372–381. doi: 10.1016/j.jhazmat.2007.08.059.CrossRefGoogle Scholar
  25. 25.
    Yetis, U., Ozcengiz, G., Dilek, F. B., Ergen, N., Erbay, A., & Dolek, A. (1999). Water Science and Technology, 38, 323–330. doi: 10.1016/S0273-1223(98)00515-0.CrossRefGoogle Scholar
  26. 26.
    Phillips, C. S. G., & Williams, R. J. P. (1965). Inorganic chemistry, Vol. I. New York: Oxford University Press.Google Scholar
  27. 27.
    Muter, O., Lubinya, L., Miller, D., Grigorjeva, L., Ventinya, E., & Rapoport, A. (2002). Process Biochemistry, 38, 123–131. doi: 10.1016/S0032-9592(02)00065-1.CrossRefGoogle Scholar
  28. 28.
    Jo, M. S., Rene, E. R., Kim, S. H., & Park, H. S. (2008). World Journal of Microbiology & Biotechnology, 24, 73–78. doi: 10.1007/s11274-007-9441-4.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of Chemical EngineeringIIT MadrasChennaiIndia

Personalised recommendations