Applied Biochemistry and Biotechnology

, Volume 158, Issue 1, pp 88–96 | Cite as

Influence of Silica-Derived Nano-Supporters on Cellobiase After Immobilization

Article

Abstract

Core shell magnetite nanoparticle (CSMN) was successfully synthesized with diameter around 125 nm according to the determination with scanning electronic microscopy. SBA-15 with diameter around 31 nm was synthesized in our previous work as another supporter for immobilized degradation enzymes. The aim of this study was to investigate the influence of silica-derived nano-supporters on cellobiase after immobilization. With covalent method, glutaraldehyde was introduced to immobilize cellobiase. The immobilized enzyme efficiency, specific activity, and its characterization, including optimum pH, pH stability, optimum temperature for enzyme reaction, and enzyme thermal stability were investigated. Results show that the method of enzyme immobilization on both nano-supporters could improve cellobiase stability under low pH and high temperature conditions compared with the free enzyme. In the aspect of immobilization efficiency, SBA had higher amount of bounded protein than that of CSMN, but had lower specific enzyme activity than CSMN, assumably due to the change in silica surface properties caused by process of supporter synthesis.

Keywords

Cellobiase Immobilization Core shell magnetite nanoparticle SBA 

Notes

Acknowledgements

The research is supported by: (1) the Department of Energy (DOE-MAT-SBI Program), grant number DE-FG36-05G085002 with subcontract #07-08-001 to Jackson State University (JSU) from University of Mississippi (P.I. Dr. Clint Williford), via management of Mr. Sumesh Arora of Mississippi Technology Alliance; (2) U.S. Department of the Army Research and Development grant # W912H2-04-2-0002 to JSU.

References

  1. 1.
    Coughlan, M. P., & Ljungdahl, L. G. (1988). In J.-P. Aubert, & P. B. J. Millet (Eds.), Biochemistry and genetics of cellulose degradation pp. 11–30). Academic Press: London.Google Scholar
  2. 2.
    Lau, A. T. Y., & Wong, W. K. R. (2001). Protein Expression and Purification, 23, 159–166. doi:10.1006/prep.2001.1486.CrossRefGoogle Scholar
  3. 3.
    Palmeri, R., & Spagna, G. (2007). Enzyme and Microbial Technology, 40, 382–389. doi:10.1016/j.enzmictec.2006.07.007.CrossRefGoogle Scholar
  4. 4.
    Macario, A., Katovic, A., Giordano, G., Forni, L., Carloni, F., Filippini, A., et al. (2005). Studies in Surface Science and Catalysis, 155, 381–394. doi:10.1016/S0167-2991(05)80166-1.CrossRefGoogle Scholar
  5. 5.
    Reshmi, R., Sanjay, G., & Sugunan, S. (2007). Catalysis Communications, 8, 393–399. doi:10.1016/j.catcom.2006.07.009.CrossRefGoogle Scholar
  6. 6.
    Petri, A., Marconcini, P., & Salvadori, P. (2005). Journal of Molecular Catalysis. B, Enzymatic, 32, 219–224. doi:10.1016/j.molcatb.2004.12.001.CrossRefGoogle Scholar
  7. 7.
    Ferrer, M., Plou, F. J., Fuentes, G., Cruces, M. A., Andersen, L., Kirk, O., et al. (2002). Biocatalysis and Biotransformation, 20, 63–71. doi:10.1080/10242420210153.CrossRefGoogle Scholar
  8. 8.
    Pierre, A. C. (2004). Biocatalysis and Biotransformation, 22, 145–170. doi:10.1080/10242420412331283314.CrossRefGoogle Scholar
  9. 9.
    Stamatis, A., Malandrinos, G., Butler, I. S., Hadjiliadis, N., & Louloudi, M. (2007). Journal of Molecular Catalysis A Chemical, 267, 120–128. doi:10.1016/j.molcata.2006.11.049.CrossRefGoogle Scholar
  10. 10.
    Hu, X., Zhao, X., & Hwang, H. (2007). Chemosphere, 66, 1618–1626. doi:10.1016/j.chemosphere.2006.08.004.CrossRefGoogle Scholar
  11. 11.
    Correa-Duarte, M. A., Giersig, M., Kotov, N. A., & Liz-Marzan, L. M. (1998). Langmuir, Chemical Physics Letters, 14, 6430–6435.Google Scholar
  12. 12.
    Salgueiriño-Maceira, V., Correa-Duarte, M. A., Spasova, M., Liz-Marzán, L. M., & Farle, M. (2006). Advanced Functional Materials, 16, 509–514. doi:10.1002/adfm.200500565.CrossRefGoogle Scholar
  13. 13.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.Google Scholar
  14. 14.
    Liu, X., Xing, J., Guan, Y., Shan, G., & Liu, H. (2004). Colloids and Surfaces A, 238, 127–131. doi:10.1016/j.colsurfa.2004.03.004.CrossRefGoogle Scholar
  15. 15.
    Lü, Y., Guo, Y., Wang, Y., Liu, X., Wang, Y., Guo, Y., et al. (2008). Microporous and Mesoporous Materials, 114, 507–510. doi:10.1016/j.micromeso.2007.12.027.CrossRefGoogle Scholar
  16. 16.
    Oh, J. T., & Kim, J. H. (2000). Enzyme and Microbial Technology, 27, 356–361. doi:10.1016/S0141-0229(00)00232-5.CrossRefGoogle Scholar
  17. 17.
    Balas, F., Rodriguez-Delgado, M., Otero-Arean, C., Conde, F., Matesanz, E., Esquivias, L., et al. (2007). Solid State Sciences, 9, 351–356. doi:10.1016/j.solidstatesciences.2007.03.004.CrossRefGoogle Scholar
  18. 18.
    Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., et al. (1998). Science, 279, 548–552. doi:10.1126/science.279.5350.548.CrossRefGoogle Scholar
  19. 19.
    Eldin, M. S. M., Portaccio, M., Diano, N., Rossi, S., Bencivenga, U., D’Uva, A., et al. (1999). Journal of Molecular Catalysis. B, Enzymatic, 7, 251–261. doi:10.1016/S1381-1177(99)00044-2.CrossRefGoogle Scholar
  20. 20.
    Cano, À., Minguillón, C., & Palet, C. (2006). Journal of Membrane Science, 280, 383–388. doi:10.1016/j.memsci.2006.01.041.CrossRefGoogle Scholar
  21. 21.
    Goldstein, L., Levin, Y., & Katchalski, E. (1964). Biochemistry, 3, 1913–1919. doi:10.1021/bi00900a022.CrossRefGoogle Scholar
  22. 22.
    Huang, X. J., Ge, D., & Xu, Z. K. (2007). European Polymer Journal, 43, 3710–3718. doi:10.1016/j.eurpolymj.2007.06.010.CrossRefGoogle Scholar
  23. 23.
    Kim, M., Ham, H. O., Oh, S. D., Park, H. G., Chang, H. N., & Choi, S. H. (2006). Journal of Molecular Catalysis. B, Enzymatic, 39, 62–68. doi:10.1016/j.molcatb.2006.01.028.CrossRefGoogle Scholar
  24. 24.
    Abdel-Naby, M. A. (1993). Applied Biochemistry and Biotechnology, 38, 69–81. doi:10.1007/BF02916413.CrossRefGoogle Scholar
  25. 25.
    Chang, M. Y., & Juang, R. S. (2005). Enzyme and Microbial Technology, 36, 75–82. doi:10.1016/j.enzmictec.2004.06.013.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Peng Wang
    • 1
  • Xiaoke Hu
    • 1
  • Sean Cook
    • 1
  • Huey-Min Hwang
    • 1
  1. 1.Biology DepartmentJackson State UniversityJacksonUSA

Personalised recommendations