Applied Biochemistry and Biotechnology

, Volume 160, Issue 2, pp 350–359 | Cite as

Production of Butyric Acid from Glucose and Xylose with Immobilized Cells of Clostridium tyrobutyricum in a Fibrous-bed Bioreactor



Butyric acid has many applications in chemical, food, and pharmaceutical industries. In the present study, Clostridium tyrobutyricum ATCC 25755 was immobilized in a fibrous-bed bioreactor to evaluate the performance of butyrate production from glucose and xylose. The results showed that the final concentration and yield of butyric acid were 13.70 and 0.46 g g−1, respectively, in batch fermentation when 30 g L−1 glucose was introduced into the bioreactor. Furthermore, high concentration 10.10 g L−1 and yield 0.40 g g−1 of butyric acid were obtained with 25 g L−1 xylose as the carbon source. The immobilized cells of C. tyrobutyricum ensured similar productivity and yield from repeated batch fermentation. In the fed-batch fermentation, the final concentration of butyric acid was further improved to 24.88 g L−1 with one suitable glucose feeding in the fibrous-bed bioreactor. C. tyrobutyricum immobilized in the fibrous-bed bioreactor would provide an economically viable fermentation process to convert the reducing sugars derived from plant biomass into the final bulk chemical (butyric acid).


Butyric acid Clostridium tyrobutyricum Biomass resource Fibrous-bed bioreactor Immobilization 



This work was supported by a grant from the Ministry of Science and Technology of China (National Basic Research Program of China, 2007CB707805).


  1. 1.
    Perlack, R. D., et al. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply (Oak Ridge National Laboratory Report TM-2005, under contract DOE/GO-102005–2135, Oak Ridge, TNGoogle Scholar
  2. 2.
    Nonhebel, S. (2005). Renewable energy and food supply: Will there be enough land? Renewable & Sustainable Energy Reviews, 9, 191–201. doi:10.1016/j.rser.2004.02.003.CrossRefGoogle Scholar
  3. 3.
    Somerville, C. (2007). Biofuels. Current Biology, 17, 115–119. doi:10.1016/j.cub.2007.01.010.CrossRefGoogle Scholar
  4. 4.
    Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology, 69, 627–642. doi:10.1007/s00253-005-0229-x.CrossRefGoogle Scholar
  5. 5.
    Watson, R., Wright, C. J., McBurney, T., Taylor, A. J., & Linforth, R. S. T. (2002). Influence of harvest data and light integral on the development of strawberry flavor compounds. Journal of Experimental Botany, 53(377), 2121–2129. doi:10.1093/jxb/erf088.CrossRefGoogle Scholar
  6. 6.
    Beyer-Sehlmeyer, G., Glei, M., Hartmann, E., Hughes, R., Persin, C., Böhm, V., et al. (2003). Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fiber sources. The British Journal of Nutrition, 90, 1057–1070. doi:10.1079/BJN20031003.CrossRefGoogle Scholar
  7. 7.
    Chen, Z.-X., & Breitman, T. R. (1994). Tributyrin: A prodrug of butyric acid for potential clinical application in differentiation therapy. Cancer Research, 54, 3494–3499.Google Scholar
  8. 8.
    Pouillart, P. R. (1998). Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sciences, 63(20), 1739–1760. doi:10.1016/S0024-3205(98)00279-3.CrossRefGoogle Scholar
  9. 9.
    Williams, E. A., Coxhead, J. M., & Mathers, J. C. (2003). Anti-cancer effects of butyrate: Use of micro-array technology to investigate mechanisms. The Proceedings of the Nutrition Society, 62, 107–115. doi:10.1079/PNS2002230.Google Scholar
  10. 10.
    Rephaeli, A., Zhuk, R., & Nudelman, A. (2000). Prodrugs of butyric acid from bench to bedside: Synthetic design, mechanisms of action, and clinical applications. Drug Development Research, 50, 379–391. doi:10.1002/1098-2299(200007/08)50:3/4<379::AID-DDR20>3.0.CO;2-8.CrossRefGoogle Scholar
  11. 11.
    Playne, M. J. (1985). Propionic and butyric acids. In M. Moo-Young (Ed.), Comprehensive Biotechnology (pp. 731–759). Oxford, UK: Pergamon.Google Scholar
  12. 12.
    Sneath, P. H. A. (1986). Genus clostridium. In J. G. Holt (Ed.), Bergey’s manual of systematic bacteriology 2/12–13 (pp. 1141–1200). Baltimore: Waverly Press.Google Scholar
  13. 13.
    Michel-Savin, D., Marchal, R., & Vandecasteele, J. P. (1990a). Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. Applied Microbiology and Biotechnology, 32, 387–392. doi:10.1007/BF00903770.CrossRefGoogle Scholar
  14. 14.
    Michel-Savin, D., Marchal, R., & Vandecasteele, J. P. (1990b). Butyrate production in continuous culture of Clostridium tyrobutyricum: Effect of end-product inhibition. Applied Microbiology and Biotechnology, 33, 127–131. doi:10.1007/BF00176512.CrossRefGoogle Scholar
  15. 15.
    Ramey, D., & Yang, S. T. (2005). Production of butyric acid and butanol from biomass. Morgantown, WV.Google Scholar
  16. 16.
    Liu, X., & Yang, S. T. (2006). Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry, 41, 801–808. doi:10.1016/j.procbio.2005.10.009.CrossRefGoogle Scholar
  17. 17.
    Najafpour, G. D. (2006). Immobilization of microbial cells for the production of organic acid and ethanol. Biochemical Engineering and Biotechnology, 8, 199–227.Google Scholar
  18. 18.
    Huang, Y., Wu, Z., Cheung, C., & Yang, S. T. (2002). Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresource Technology, 82(1), 51–59. doi:10.1016/S0960-8524(01)00151-1.CrossRefGoogle Scholar
  19. 19.
    Huang, Y., & Yang, S. T. (1998). Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. Biotechnology and Bioengineering, 60, 499–507. doi:10.1002/(SICI)1097-0290(19981120)60:4<498::AID-BIT12>3.0.CO;2-E.CrossRefGoogle Scholar
  20. 20.
    Yang, S. T. (1996). Extractive fermentation using convoluted fibrous bed bioreactor. US Patent No. 5,563,069.Google Scholar
  21. 21.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.CrossRefGoogle Scholar
  22. 22.
    He, G., Kong, Q., Chen, Q., & Ruan, H. (2005). Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB. Journal of Zhejiang University. Science, 11, 1076–1080. doi:10.1631/jzus.2005.B1076.CrossRefGoogle Scholar
  23. 23.
    El Kanouni, A., Zerdani, S., Zaafa, S., Znassni, M., Loutfi, M., & Boudouma, M. (1998). The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate. World Journal of Microbiology & Biotechnology, 14, 431–435. doi:10.1023/A:1008881731894.CrossRefGoogle Scholar
  24. 24.
    Heyndrickx, M., De Vos, P., & De Ley, J. (1991). Fermentation of D-xylose by Clostridium butyricum LMG 1213t1 in chemostats. Enzyme and Microbial Technology, 13, 893–897. doi:10.1016/0141-0229(91)90105-J.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Institute of Bioengineering, Department of Chemical and Biochemical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations