Advertisement

Applied Biochemistry and Biotechnology

, Volume 157, Issue 2, pp 329–345 | Cite as

Characterization of Rhamnolipid Produced by Pseudomonas aeruginosa Isolate Bs20

  • Ahmad Mohammad Abdel-Mawgoud
  • Mohammad Mabrouk AboulwafaEmail author
  • Nadia Abdel-Haleem Hassouna
Article

Abstract

Rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20 is viscous sticky oily yellowish brown liquid with a fruity odor. It showed solubility at aqueous pH > 4 with optimum solubility at pH 7–7.5 and freely soluble in ethyl acetate. This biosurfactant has a very high surface activity as it could lower the surface tension of water to 30 mN/m at about 13.4 mg/L, and it exhibited excellent stabilities at high temperatures (heating at 100°C for 1 h and autoclaving at 121°C for 10 min), salinities (up to 6% NaCl), and pH values (up to pH 13). The produced biosurfactant can be used in the crude form either as cell-free or cell-containing culture broth of the grown bacteria, since both preparations showed high emulsification indices ranged between 59% and 66% against kerosene, diesel, and motor oil. These characters make the test rhamnolipid a potential candidate for use in bioremediation of hydrocarbon-contaminated sites or in the petroleum industry. High-performance thin-layer chromatography densitometry revealed that the extracted rhamnolipid contained the two most active rhamnolipid homologues dirhamno dilipidic rhamnolipid and monorhamno dilipidic rhamnolipid at 44% and 56%, respectively, as compared to 51% and 29.5%, respectively, in a standard rhamnolipid preparation. The nature and ratio of these two rhamnolipid homologues showed to be strain dependent rather than medium-component dependent.

Keywords

Rhamnolipid Pseudomonas aeruginosa Characterization 

Notes

Acknowledgments

The authors would like to thank Dr. Salam M. Awada (AgSciTech, Logan, UT, USA) for kindly supplying the standard rhamnolipid and Dr. Anas M. Abdel-Mawgoud (ARCMP, NODCAR, Ministry of Health, Cairo, Egypt) for technical support and help in HPTLC experiments.

References

  1. 1.
    Hardegger, M., Koch, T. A. K., Ochsner, U. A., Fiechter, A., & Reiser, J. (1994). Applied and Environmental Microbiology, 60, 3679–3687.Google Scholar
  2. 2.
    Mulligan, C. N., & Gibbs, B. F. (1993). In N. Kosaric (Ed.), Biosurfactants (pp. 339–345). New York: Marcel Dekker.Google Scholar
  3. 3.
    Reiser, J., Koch, A. K., Ochsner, U. A., & Fiechter, A. (1993). In N. Kosaric (Ed.), Biosurfactants: Production, properties, applications (pp. 231–249). New York, NY: Marcel Dekker.Google Scholar
  4. 4.
    Syldatk, C., & Wagner, F. (1987). In N. Kosaric, W. L. Cairns, & N. C. C. Gray (Eds.), Biosurfactants and biotechnology (pp. 89–120). New York: Marcel Dekker.Google Scholar
  5. 5.
    Mata-Sandoval, J. C., Karns, J., & Torrents, A. (1999). Journal of Chromatography. A, 864, 211–220.CrossRefGoogle Scholar
  6. 6.
    Van Dyke, M. I., Couture, P., Brauer, M., Lee, H., & Trevors, J. T. (1993). Canadian Journal of Microbiology, 39, 1071–1078.Google Scholar
  7. 7.
    Schenk, T., Schuphan, I., & Schmidt, B. (1995). Journal of Chromatography. A, 693, 7–13.CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., & Miller, R. M. (1994). Applied and Environmental Microbiology, 60, 2101–2106.Google Scholar
  9. 9.
    Arino, S., Marchal, R., & Vandecasteele, J.-P. (1996). Applied Microbiology and Biotechnology, 45, 162–168.CrossRefGoogle Scholar
  10. 10.
    Champion, J. T., Gilkey, J. C., Lamparsk, H., Retterer, J., & Miller, R. M. (1995). Journal of Colloid and Interface Science, 170, 569–574.CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., & Miller, R. M. (1992). Applied and Environmental Microbiology, 58, 3276–3282.Google Scholar
  12. 12.
    Maier, R. M., & Soberon-Chavez, G. (2000). Applied Microbiology and Biotechnology, 54, 625–633.CrossRefGoogle Scholar
  13. 13.
    Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A.-H. (2007). Egyptian Journal of Biotechnology, 27, 166–185.Google Scholar
  14. 14.
    Bodour, A. A., Drees, K. P., & Maier, R. M. (2003). Applied and Environmental Microbiology, 69, 3280–3287.CrossRefGoogle Scholar
  15. 15.
    Ozdemir, G., Peker, S., & Helvaci, S. S. (2004). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234, 135–143.CrossRefGoogle Scholar
  16. 16.
    Cooper, D. G., & Goldenberg, B. G. (1987). Applied and Environmental Microbiology, 53, 224–229.Google Scholar
  17. 17.
    Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., & Cameotra, S. S. (2002). Applied and Environmental Microbiology, 68, 6210–6219.CrossRefGoogle Scholar
  18. 18.
    Benincasa, M., Abalos, A., Oliveira, I., & Manresa, A. (2004). Antonie Van Leeuwenhoek, 85, 1–8.CrossRefGoogle Scholar
  19. 19.
    Dubey, K., & Juwarkar, A. (2001). World Journal of Microbiology & Biotechnology, 17, 61–69.CrossRefGoogle Scholar
  20. 20.
    Clifford, J. S., Ioannidis, M. A., & Legge, R. L. (2007). Journal of Colloid and Interface Science, 305, 361–365.CrossRefGoogle Scholar
  21. 21.
    Fox, S. L., & Bala, G. A. (2000). Bioresource Technology, 75, 235–240.CrossRefGoogle Scholar
  22. 22.
    Sen, R., & Swaminathan, T. (2005). Process Biochemistry, 40, 2953–2958.CrossRefGoogle Scholar
  23. 23.
    Turkovskaya, O. V., Dmitrieva, T. V., & Muratova, A. Y. (2001). Applied Biochemistry and Microbiology, 37, 71–75.CrossRefGoogle Scholar
  24. 24.
    Bonilla, M., Olivaro, C., Corona, M., Vazquez, A., & Soubes, M. (2005). Journal of Applied Microbiology, 98, 456–463.CrossRefGoogle Scholar
  25. 25.
    Helvaci, S. S., Peker, S., & Ozdemir, G. (2004). Colloids and Surfaces. B, Biointerfaces, 35, 225–233.CrossRefGoogle Scholar
  26. 26.
    Vogt Singer, M. E., & Finnerty, W. R. (1990). Canadian Journal of Microbiology, 36, 741–745.CrossRefGoogle Scholar
  27. 27.
    Matsufuji, M., Nakata, K., & Yoshimoto, A. (1997). Biotechnology Letters, 19, 1213–1215.CrossRefGoogle Scholar
  28. 28.
    Haba, E., Pinazo, A., Jauregui, O., Espuny, M. J., Infante, M. R., & Manresa, A. (2003). Biotechnology and Bioengineering, 81, 316–322.CrossRefGoogle Scholar
  29. 29.
    Parkinson, M. (1985). Biotechnology Advances, 3, 65–83.CrossRefGoogle Scholar
  30. 30.
    Nitschke, M., Costa, S. G. V. A. O., & Contiero, J. (2005). Biotechnology Progress, 21, 1593–1600.CrossRefGoogle Scholar
  31. 31.
    Takeyama, H., Wada, M., & Matsunaga, T. (2002). Applied Biochemistry and Biotechnology, 98–100, 319–326.CrossRefGoogle Scholar
  32. 32.
    Bognolo, G. (1999). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152, 41–52.CrossRefGoogle Scholar
  33. 33.
    Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61, 47–64.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Ahmad Mohammad Abdel-Mawgoud
    • 1
  • Mohammad Mabrouk Aboulwafa
    • 1
    Email author
  • Nadia Abdel-Haleem Hassouna
    • 1
  1. 1.Department of Microbiology and Immunology, Faculty of PharmacyAin Shams UniversityCairoEgypt

Personalised recommendations