Advertisement

Applied Biochemistry and Biotechnology

, Volume 157, Issue 2, pp 263–277 | Cite as

Enzymatic Polymerization of Natural Anacardic Acid and Antibiofouling Effects of Polyanacardic Acid Coatings

  • Rahul Chelikani
  • Yong Hwan Kim
  • Do-Young Yoon
  • Dong-Shik KimEmail author
Article

Abstract

Anacardic acid, separated from cashew nut shell liquid, is well known for its strong antibiotic and antioxidant activities. Recent findings indicate that phenolic compounds from plant sources have an effect on Gram-negative bacteria biofilm formation. In this work, a polyphenolic coating was prepared from anacardic acid using enzymatic synthesis and tested for its effects on biofilm formation of both Gram-negative and Gram-positive bacteria. Natural anacardic acid was enzymatically polymerized using soybean peroxidase. Hydrogen peroxide and phenothiazine-10-propionic acid were used as an oxidizing agent and redox mediator, respectively. Nuclear magnetic resonance and Fourier transform infrared (FTIR) analyses showed the formation of oxyphenylene and phenylene units through the phenol rings. No linkage through the alkyl chain was observed, which proved a high chemo-selectivity of the enzyme. Aqueous solvents turned out to play an important role in the polymer production yield and molecular weight. With 2-propanol, the highest production yield (61%) of polymer (molecular weight = 3,900) was observed, and with methanol, higher-molecular-weight polymers (5,000) were produced with lower production yields (43%). The resulting polyanacardic acid was cross-linked on a solid surface to form a permanent natural polymer coating. The FTIR analysis indicates that the cross-linking between the polymers took place through the unsaturated alkyl side chains. The polyanacardic acid coating was then tested for its antibiofouling effect against Gram-negative and Gram-positive bacteria and compared with the antibiofouling effects of polycardanol coatings reported in the literature. The polyanacardic acid coating showed more reduction in biofilm formation on its surface than polycardanol coatings in the case of Gram-positive bacteria, while in the case of Gram-negative bacteria, it showed a similar reduction in biofilm formation as polycardanol.

Keywords

Enzymatic polymerization Anacardic acid CNSL Antibiofouling Soybean peroxidase Redox mediator 

Notes

Acknowledgment

The present research has been conducted by the funding support from National Science Foundation (CTS-0626022).

References

  1. 1.
    Gellerman, J. L., Walsh, N. J., Werner, N. K., & Schlenk, H. (1969). Canadian Journal of Microbiology, 15, 1219–1223.CrossRefGoogle Scholar
  2. 2.
    Himejima, M., & Kubo, I. (1991). Journal of Agricultural and Food Chemistry, 39, 418–421.CrossRefGoogle Scholar
  3. 3.
    Kubo, I., Masuoka, N., Ha, T. J., & Tsujimoto, K. (2006). Food Chemistry, 99, 555–562.CrossRefGoogle Scholar
  4. 4.
    Eichbaum, F. W. (1946). Memorias do Instituto Butantan, 19, 71–86.Google Scholar
  5. 5.
    Grazzini, R., Hesk, D., Heininger, E., Hildebrandt, G., Reddy, C. C., Cox-Foster, D., Medford, J., Craig, R., & Mumma, R. O. (1991). Biochemical and Biophysical Research Communications, 176, 775–780.CrossRefGoogle Scholar
  6. 6.
    Kozubek, A., & Nienartowicz, B. (1995). Acta Biochimica Polonica, 42, 309–316.Google Scholar
  7. 7.
    Trevisan, M. T. S., Pfundstein, B., Haubner, R., Würtele, G., Spiegelhalder, B., Bartsch, H., et al. (2005). Food and Chemical Toxicology, 44, 188–197.CrossRefGoogle Scholar
  8. 8.
    Menon, A. R. R., Pillai, C. K. S., Sudha, J. D., & Mathew, A. G. (1985). Journal of Scientific and Industrial Research, 44, 324–338.Google Scholar
  9. 9.
    Kubo, I., Komatsu, S., & Ochi, M. (1986). Journal of Agricultural and Food Chemistry, 34, 970–973.CrossRefGoogle Scholar
  10. 10.
    Parmashivappa, R., Kumar, P. P., Vithyathil, P. J., & Rao, A. S. (2001). Journal of Agricultural and Food Chemistry, 49, 2548–2551.CrossRefGoogle Scholar
  11. 11.
    Ikeda, R., Tanaka, H., Uyama, H., & Kobayashi, S. (2000). Polymer Journal, 32, 589–593.CrossRefGoogle Scholar
  12. 12.
    Nagabhushana, K. S., & Ravindranath, B. (1995). Journal of Agricultural and Food Chemistry, 43, 2381–2383.CrossRefGoogle Scholar
  13. 13.
    Tsunetaro, K., & Mitsuo, K. (1995). Japanese Patent JP1995000062290.Google Scholar
  14. 14.
    General Foods (Rye, NY) (1946). Indian Patent 34671.Google Scholar
  15. 15.
    Krinsky, N. I. (1992). Proceedings of the Society for Experimental Biology and Medicine, 200, 248–254.Google Scholar
  16. 16.
    Hładyszowski, J., Zubik, L., & Kozubek, A. (1998). Free Radical Research, 28, 359–368.CrossRefGoogle Scholar
  17. 17.
    Kubo, I. (1999). Chemtech, 29, 37–42.Google Scholar
  18. 18.
    Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., et al. (1993). Journal of Agricultural and Food Chemistry, 41, 1016–1101.CrossRefGoogle Scholar
  19. 19.
    Tyman, J. H. P. (2001). Recent Research and Development in Lipid Research, 5, 125–145.Google Scholar
  20. 20.
    Kubo, I., Ochi, M., Vieira, P. C., & Komatsu, S. (1993). Journal of Agricultural and Food Chemistry, 41, 1012–1015.CrossRefGoogle Scholar
  21. 21.
    Karakaya, S. (2004). Critical Reviews in Food Science and Nutrition, 44, 453–464.CrossRefGoogle Scholar
  22. 22.
    Dedoussis, G. V. Z., Kaliora, A. C., & Andrikopoulos, N. K. (2005). Cell Biology International, 29, 884–889.CrossRefGoogle Scholar
  23. 23.
    Kubo, I., Chen, Q. X., & Nihei, K. I. (2003). Food Chemistry, 81, 241–247.CrossRefGoogle Scholar
  24. 24.
    Kim, J. H., Mahoney, N., Chan, K. L., Molyneux, R. J., & Campbell, B. C. (2006). Applied Microbiology and Biotechnology, 70, 735–739.CrossRefGoogle Scholar
  25. 25.
    Serafini, M., Laranjinha, J. A. N., Almeida, L. M., & Maiani, G. (2000). The Journal of Nutritional Biochemistry, 11, 585–590.CrossRefGoogle Scholar
  26. 26.
    Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., et al. (2002). The American Journal of Medicine, 113, 71s–88s.CrossRefGoogle Scholar
  27. 27.
    Kim, Y. H., An, E. S., Song, B. K., Kim, D. S., & Chelikani, R. (2003). Biotechnology Letters, 25, 1521–1524.CrossRefGoogle Scholar
  28. 28.
    Kobayashi, S. (1999). Journal of Polymer Science. Part A, Polymer Chemistry, 37, 3041–3056.CrossRefGoogle Scholar
  29. 29.
    Uyama, H., & Kobayashi, S. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19, 117–127.CrossRefGoogle Scholar
  30. 30.
    Masuoka, N., & Kubo, I. (2004). Biochimica et Biophysica Acta, 1688, 245–249.Google Scholar
  31. 31.
    Kubo, I., Kinst-Hori, I., & Yokokawa, Y. (1994). Journal of Natural Products, 57, 545–551.CrossRefGoogle Scholar
  32. 32.
    Ha, T. J., & Kubo, I. (2005). Journal of Agricultural and Food Chemistry, 53, 4350–4354.CrossRefGoogle Scholar
  33. 33.
    Shobha, S. V., Ramadoss, C. S., & Ravindranath, B. (1994). Journal of Natural Products, 57, 1755–1757.CrossRefGoogle Scholar
  34. 34.
    Burton, S. G. (2003). Current Organic Chemistry, 7(13), 1317–1331.CrossRefGoogle Scholar
  35. 35.
    Won, K., Kim, Y. H., An, E. S., Lee, Y. S., & Song, B. K. (2004). Biomacromolecules, 5, 1–4.CrossRefGoogle Scholar
  36. 36.
    Harvey, P. J., Schoemaker, H. E., & Palmer, J. M. (1986). FEBS Letters, 195, 242–246.CrossRefGoogle Scholar
  37. 37.
    Malick, L. E., & Wilson, R. B. (1975). Stain Technology, 50, 265–269.Google Scholar
  38. 38.
    Rozee, K. R., Cooper, D., Lam, K., & Costerton, J. W. (1982). Applied and Environmental Microbiology, 43, 1451–1463.Google Scholar
  39. 39.
    Ikeda, R., Sugihara, J., Uyama, H., & Kobayashi, S. (1998). Polymer International, 47, 295–301.CrossRefGoogle Scholar
  40. 40.
    Guevin, P. R. (1995). Journals of Coating Technology, 67, 61–65.Google Scholar
  41. 41.
    Briandet, R., Herry, J., & Bellon-Fontaine, M. (2001). Colloids and Surfaces. B, Biointerfaces, 21, 299–310.CrossRefGoogle Scholar
  42. 42.
    Teixeira, P., & Oliveira, R. (1999). Journal of Adhesion Science and Technology, 13, 1287–1294.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Rahul Chelikani
    • 1
  • Yong Hwan Kim
    • 2
  • Do-Young Yoon
    • 2
  • Dong-Shik Kim
    • 1
    Email author
  1. 1.Department of Chemical and Environmental EngineeringUniversity of ToledoToledoUSA
  2. 2.Department of Chemical EngineeringKwangwoon UniversitySeoulSouth Korea

Personalised recommendations