Applied Biochemistry and Biotechnology

, Volume 157, Issue 2, pp 174–209 | Cite as

Structure and Action Mechanism of Ligninolytic Enzymes

  • Dominic W. S. WongEmail author


Lignin is the most abundant renewable source of aromatic polymer in nature, and its decomposition is indispensable for carbon recycling. It is chemically recalcitrant to breakdown by most organisms because of the complex, heterogeneous structure. The white-rot fungi produce an array of extracellular oxidative enzymes that synergistically and efficiently degrade lignin. The major groups of ligninolytic enzymes include lignin peroxidases, manganese peroxidases, versatile peroxidases, and laccases. The peroxidases are heme-containing enzymes with catalytic cycles that involve the activation by H2O2 and substrate reduction of compound I and compound II intermediates. Lignin peroxidases have the unique ability to catalyze oxidative cleavage of C–C bonds and ether (C–O–C) bonds in non-phenolic aromatic substrates of high redox potential. Manganese peroxidases oxidize Mn(II) to Mn(III), which facilitates the degradation of phenolic compounds or, in turn, oxidizes a second mediator for the breakdown of non-phenolic compounds. Versatile peroxidases are hybrids of lignin peroxidase and manganese peroxidase with a bifunctional characteristic. Laccases are multi-copper-containing proteins that catalyze the oxidation of phenolic substrates with concomitant reduction of molecular oxygen to water. This review covers the chemical nature of lignin substrates and focuses on the biochemical properties, molecular structures, reaction mechanisms, and related structures/functions of these enzymes.


Lignin peroxidase Manganese peroxidase Versatile peroxidase Laccase Lignin degradation 


  1. 1.
    Brunow, G. (2001). Methods to reveal the structure of lignin. In M. Hofrichter, & A. Steinbuchel (Eds.), Lignin, humic substances and coal (Biopolymers, vol. 1). Weinheim, Germany: Wiley-VCH.Google Scholar
  2. 2.
    Fukushima, K. (2001). Regulation of syringyl to guaiacyl ratio in lignin biosynthesis. Journal of Plant Research, 114, 499–508, doi: 10.1007/PL00014017.Google Scholar
  3. 3.
    Higuchi, T. (2006). Look back over the studies of lignin biochemistry. Journal of Wood Science, 52, 2–8, doi: 10.1007/s10086-005-0790-z.Google Scholar
  4. 4.
    Del Rio, J. C., Marques, G., Rencoret, J., Martinez, A. T., & Gutierrez, A. (2007). Occurrence of naturally acetylated lignin units. Journal of Agricultural and Food Chemistry, 55, 5461–5466, doi: 10.1021/jf0705264.Google Scholar
  5. 5.
    Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., et al. (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochemistry Review, 3, 29–60, doi: 10.1023/B:PHYT.0000047809.65444.a4.Google Scholar
  6. 6.
    Alder, E. (1977). Lignin chemistry - past, present and future. Wood Science and Technology, 11, 169–218, doi: 10.1007/BF00365615.Google Scholar
  7. 7.
    Karhunen, P., Rummakko, P., Sipila, J., Brunow, G., & Kilpelainen, I. (1995). The formation of dibenzodiomocin structures by oxidative coupling. A model reaction for lignin biosynthesis. Tetrahedron Letter, 36, 4501–4504, doi: 10.1016/0040-4039(95)00769-9.Google Scholar
  8. 8.
    Argyropoulos, D. S., Jurasek, L., Kristofova, L., Xia, Z. C., Sun, Y. J., & Palus, E. (2002). Abundance and reactivity of dibenzodioxocins in softwood lignin. Journal of Agricultural and Food Chemistry, 50, 658–666, doi: 10.1021/jf010909g.Google Scholar
  9. 9.
    Zhang, L., & Gellerstedt, G. (2001). NMR observation of a new lignin structure, a spirodienone. Chemical Communications, 2744–2745.Google Scholar
  10. 10.
    Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review Plant Biology, 54, 519–546, doi: 10.1146/annurev.arplant.54.031902.134938.Google Scholar
  11. 11.
    Davin, L. B., & Lewis, N. G. (2003). A historical perspective on lignan biosynthesis: Monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochemistry Review, 2, 257–288, doi: 10.1023/B:PHYT.0000046175.83729.b5.Google Scholar
  12. 12.
    Chen, Y.-R., & Sarkanen, S. (2003). Macromolecular lignin replication: A mechanistic working hypothesis. Phytochemistry Review, 2, 235–255, doi: 10.1023/ Scholar
  13. 13.
    Brauns, F. E. (1939). Native lignin I. Its isolation and methylation. Journal of the American Chemical Society, 61, 2120–2127, doi: 10.1021/ja01877a043.Google Scholar
  14. 14.
    Buchanan, M. A., Brauns, F. E., & Leaf, Jr., R. L. (1949). Native lignin II. Native aspen lignin. Journal of the American Chemical Society, 71, 1297–1299, doi: 10.1021/ja01172a043.Google Scholar
  15. 15.
    Bjorkman, A. (1954). Isolation of lignin from finely divided wood with neutral solvents. Nature, 174, 1057–1058, doi: 10.1038/1741057a0.Google Scholar
  16. 16.
    Gellerstedt, G., Pranda, J., & Lindfors, E. L. (1994). Structural and molecular properties of residual birch kraft lignin. Journal of Wood Chemistry and Technology, 14, 467–482, doi: 10.1080/02773819408003108.Google Scholar
  17. 17.
    Alder, E., Pepper, J. M., & Eriksoo, E. (1957). Action of mineral acid on lignin and model substances of guaiacylglycerol-beta-aryl ether type. Industrial Engineering Chemistry, 49, 1391–1392, doi: 10.1021/ie50573a037.Google Scholar
  18. 18.
    Pew, J., & Weyna, P. (1962). Fine grinding, enzyme digestion and lignin-cellulose bond in wood. TAPPI, 45, 247–256.Google Scholar
  19. 19.
    Chang, H. M., Cowling, E. B., Brown, W., Alder, E., & Miksche, G. (1975). Comparative studies on cellulolytic enzyme lignin and milled wood lignin of Sweetgum and Spruce. Holzforschung, 29, 153–159.CrossRefGoogle Scholar
  20. 20.
    Kirk, T. K., Connors, W. J., Bleam, R. D., Hackett, W. F., & Zeikus, J. G. (1975b). Preparation and microbial decomposition of synthetic [14C]lignins. Proceedings of the National Academy of Sciences of the USA, 72, 2515–2519, doi: 10.1073/pnas.72.7.2515.Google Scholar
  21. 21.
    Kirk, T. K., & Brunow, G. (1988). Synthetic 14C-labeled lignins. Methods in Enzymology, 161, 65–73, doi: 10.1016/0076-6879(88)61010-X.Google Scholar
  22. 22.
    Kirk, T. K., Connors, W. J., & Zeikus, G. (1976). Requirements for a growth substrate during lignin decomposition by two wood-rotting fungi. Applied and Environmental Microbiology, 32, 192–194.Google Scholar
  23. 23.
    Mester, T., Varela, E., & Tien, M. (2004). Wood degradation by brown-rot and white-rot fungi. The Mycota II: genetics and biotechnology (2nd edition). Springer-Verlag Berlin-Heidelberg.Google Scholar
  24. 24.
    Blanchette, R. A. (1984). Screening wood decayed by white rot fungi for preferential lignin degradation. Applied and Environmental Microbiology, 48, 647–653, Medline.Google Scholar
  25. 25.
    Otjen, L., & Blanchette, R. (1987). Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung, 41, 343–349.CrossRefGoogle Scholar
  26. 26.
    Blanchette, R. A. (1991). Delignification by wood-decay fungi. Annual Review of Phytopathology, 29, 381–398, doi: 10.1146/ Scholar
  27. 27.
    Eriksson, K.-E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and Enzymatic Degradation of wood and wood components p. 407. Berlin Heidelberg: Springer-Verlag.Google Scholar
  28. 28.
    Gilbertson, R. L. (1980). Wood-rotting fungi of north America. Mycologia, 72, 1–49, doi: 10.2307/3759417.Google Scholar
  29. 29.
    Cowling, E. B. (1961). Comparative biochemistry of decay of sweetgum sapwood by white-rot and brown-rot fungi. USDA Technical Bulletin, 1258, 1–79.Google Scholar
  30. 30.
    Baldrian, P. (2005). Fungal laccases - occurrence and properties. FEMS Microbiology Reviews, 30, 215–242, doi: 10.1111/j.1574-4976.2005.00010.x.Google Scholar
  31. 31.
    Farrell, L. (1987). Combustion: The microbial degradation of lignin. Annual Reviews in Microbiology, 41, 465–505, doi: 10.1146/annurev.micro.41.1.465.Google Scholar
  32. 32.
    Gold, H. M., Youngs, H. L., & Sollewijn Gelpke, M. D. (2000). Manganese peroxidase. Metal Ions in Biological Systems, 37, 559–586, Medline.Google Scholar
  33. 33.
    Kersten, P., & Cullen, D. (2007). Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genetics Biology, 44, 77–87, doi: 10.1016/j.fgb.2006.07.007.Google Scholar
  34. 34.
    Martinez, A. T. (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microbial Technology, 30, 425–444, doi: 10.1016/S0141-0229(01)00521-X.Google Scholar
  35. 35.
    Martinez, A. T., Speranza, M., Ruiz-Duenas, F. J., Ferreira, P., Camarero, S., Guillen, F., et al. (2005). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204, Medline.Google Scholar
  36. 36.
    Welinder, K. G. (1992). Superfamily of plant, fungal and bacterial peroxidases. Current Opinion in Structural Biology, 2, 388–393, doi: 10.1016/0959-440X(92)90230-5.Google Scholar
  37. 37.
    Tien, M., & Kirt, T. K. (1983). Lignin-degrading enzyme from the hymenomycetes Phanerochaete chrysosporium burds. Science, 221, 661–663, doi: 10.1126/science.221.4611.661.Google Scholar
  38. 38.
    Hammel, K. E., Jensen, Jr., K. A., Mozuch, M. D., Landucci, L. L., Tien, M., & Pease, E. A. (1993). Ligninolysis by a purified lignin peroxidase. Journal of Biological Chemistry, 268, 12274–12281, Medline.Google Scholar
  39. 39.
    Valli, K., Wariishi, H., & Gold, M. H. (1990). Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: Role of veratryl alcohol in lignin biodegradation. Biochemistry, 29, 8535–8539, doi: 10.1021/bi00489a005.Google Scholar
  40. 40.
    Edwards, S. L., Raag, R., Wariishi, H., Gold, M. H., & Poulos, T. L. (1993). Crystal structure of lignin peroxidase. Proceedings of the National Academy of Sciences of the USA, 90, 750–754, doi: 10.1073/pnas.90.2.750.Google Scholar
  41. 41.
    Poulos, T. L., Edwards, S. L., Wariishi, H., & Gold, M. H. (1993). Crystallographic refinement of lignin peroxidase at 2Δ. Journal of Biological Chemistry, 268, 4429–4440, Medline.Google Scholar
  42. 42.
    Blodig, W., Smith, A. T., Doyle, W. A., & Piontek, K. (2001). Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminate the redox active tryptophan 171. Implications for the reaction mechanism. Journal of Molecular Biology, 305, 851–861, doi: 10.1006/jmbi.2000.4346.Google Scholar
  43. 43.
    Choinowski, T., Blodig, W., Winterhalter, K. H., & Piontek, K. (1999). The crystal structure of lignin peroxidase at 1.70Δ resolution reveals a hydroxy group on the Cβ of tryptophan 171: A novel radical site formed during the redox cycle. Journal of Molecular Biology, 286, 809–827, doi: 10.1006/jmbi.1998.2507.Google Scholar
  44. 44.
    Blodig, W., Doyle, W. A., Smith, A. T., Winterhalter, K., Choinowski, T., & Piontek, K. (1998). Autocatalytic formation of a hydroxy group at the Cβ of Trp171 in lignin peroxidase. Biochemistry, 37, 8832–8838, doi: 10.1021/bi9727186.Google Scholar
  45. 45.
    Doyle, W. A., Blodig, W., Weitch, N. C., Piontek, K., & Smith, A. T. (1998). Two substrate interaction sites in lignin peroxidase revealed by site-directed mutangesis. Biochemistry, 37, 15097–15105, doi: 10.1021/bi981633h.Google Scholar
  46. 46.
    Timofeevski, S. L., Nie, G., Reading, S., & Aust, S. D. (1999). Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Biochemical and Biophysical Research Communications, 256, 500–504, doi: 10.1006/bbrc.1999.0360.Google Scholar
  47. 47.
    Timofeevski, S. L., Nie, G., Reading, S., & Aust, S. D. (2000). Substrate specificity of lignin peroxidase and a S168W variant of manganese peroxidase. Archives of Biochemistry and Biophysics, 373, 147–153, doi: 10.1006/abbi.1999.1562.Google Scholar
  48. 48.
    Wong, D. W. S. (1995). Food enzymes: structure and mechanism pp. 321–345. NY: Chapman & Hall.Google Scholar
  49. 49.
    Renganathan, V., & Gold, M. H. (1986). Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot Basidiomycete Phanerochaete chrysosporium. Biochemistry, 25, 1626–1631, doi: 10.1021/bi00355a027.Google Scholar
  50. 50.
    Andrawis, A., Johnson, K. A., & Tien, M. (1988). Studies on Compound I formation of the lignin peroxidase from Phanerochaete chrysosporium. Journal of Biological Chemistry, 263, 1196–1198.Google Scholar
  51. 51.
    Marquez, L., Wariishi, H., Dunford, H. B., & Gold, M. H. (1988). Spectroscopic and kinetic properties of the oxidized intermediates of lignin peroxidase from Phanerochaete chrysosporium. Journal of Biological Chemistry, 263, 10549–10552, Medline.Google Scholar
  52. 52.
    Behere, D. V., Gonzalez-Vergara, E., & Goff, H. M. (1985). Unique cyanide nitrogen-15 nuclear magnetic resonance chemical shift values for cyano-eroxidase complexes. Relevance to the heme active-site structure and mechanism of peroxide activation. Biochimica et Biophysica Acta, 832, 319–325.Google Scholar
  53. 53.
    Chance, B., Power, L., Ching, Y., Poulos, T., Schonbaum, G. R., Yamazaki, I., & Paul, K. G. (1984). X-Ray absorption studies of intermediates in peroxidase activity. Archives of Biochemistry and Biophysics, 235, 596–611, doi: 10.1016/0003-9861(84)90234-0.Google Scholar
  54. 54.
    Blodig, W., Smith, A. T., Winterhalter, K., & Piontek, K. (1999). Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Archives of Biochemistry and Biophysics, 370, 86–92, doi: 10.1006/abbi.1999.1365.Google Scholar
  55. 55.
    Tien, M., Kirk, T. K., Bull, C., & Fee, J. A. (1986). Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. Journal of Biological Chemistry, 261, 1687–1683, Medline.Google Scholar
  56. 56.
    Ator, M. A., & de Montelano, P. R. O. (1987). Protein control of prosthetic heme activity. Reaction of substrates with the heme edge of horseradish peroxidase. Journal of Biological Chemistry, 262, 1542–1551, Medline.Google Scholar
  57. 57.
    Schoemaker, H. E., & Piontek, K. (1996). On the interaction of lignin peroxidase with lignin. Pure and Applied Chemistry, 68, 2089–2096, doi: 10.1351/pac199668112089.Google Scholar
  58. 58.
    Sollewijn Gelpke, M. D., Lee, J., & Gold, M. H. (2002). Lignin peroxidase oxidation of veratryl alcohol: Effects of the mutants H82A, Q222A, W171A, and F267L. Biochemistry, 41, 3498–3506, doi: 10.1021/bi011930d.Google Scholar
  59. 59.
    Johjima, T., Wariishi, H., & Tanaka, H. (2002). Veratryl alcohol binding sites of lignin peroxidase from Phanerochaete chrysosporium. Journal of Molecular Catalysis. B, Enzymatic, 17, 49–57.Google Scholar
  60. 60.
    Gerini, M. F., Roccatano, D., Baciocchi, E., & Nola, A. D. (2003). Molecular dynamics simulations of lignin peroxidase in solution. Biophysical Journal, 84, 3883–3893.Google Scholar
  61. 61.
    Wariishi, H., & Gold, M. H. (1989). Lignin peroxidase compound III. Formation, inactivation, and conversion to the native enzyme. FEBS Letters, 243, 165–168, doi: 10.1016/0014-5793(89)80122-X.Google Scholar
  62. 62.
    Cai, D., & Tien, M. (1992). Kinetic studies on the formation and decomposition of compounds II and III. Journal of Biological Chemistry, 267, 1149–1155.Google Scholar
  63. 63.
    Barr, D. P., & Aust, S. D. (1994). Conversion of lignin peroxidase compound III to active enzyme by cation radicals. Archives of Biochemistry and Biophysics, 312, 511–515, doi: 10.1006/abbi.1994.1339.Google Scholar
  64. 64.
    Schoemaker, H. E., Harvey, P. J., Bowen, R. M., & Palmer, J. M. (1985). On the mechanism of enzymatic lignin breakdown. FEBS Letters, 183, 7–12, doi: 10.1016/0014-5793(85)80942-X.Google Scholar
  65. 65.
    Baciocchi, E., Gerini, M. F., Lanzalunga, O., Lapi, A., Piparo, M. G. L., & Mancinelli, S. (2001a). Isotope-effect profiles in the oxidative N-demethylation of N,N-dimethylanilines catalyzed by lignin peroxidase and a chemical model. European Journal of Organ Chemistry, 2001, 2305–2310, doi: 10.1002/1099-0690(200106)2001:12<2305::AID-EJOC2305>3.0.CO;2-E.Google Scholar
  66. 66.
    Harvey, P. J., & Palmer, J. M. (1990). Oxidation of phenolic compounds by ligninase. Journal of Biotechnology, 13, 169–179, doi: 10.1016/0168-1656(90)90102-H.Google Scholar
  67. 67.
    Tien, M., & Kirk, T. K. (1984). Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proceedings of the National Academy of Sciences of the USA, 81, 2280–2284, doi: 10.1073/pnas.81.8.2280.Google Scholar
  68. 68.
    Harvey, G.-F., Gilardi, G.-F., Goble, M. L., & Palmer, J. M. (1993). Charge transfer reactions and feedback control of lignin peroxidase by phenolic compounds: Significance in lignin degradation. Journal of Biotechnology, 30, 57–69, doi: 10.1016/0168-1656(93)90027-K.Google Scholar
  69. 69.
    Koduri, R. S., & Tien, M. (1995). Oxidation of guaiacol by lignin peroxidase. Journal of Biological Chemistry, 270, 22254–22258, doi: 10.1074/jbc.270.38.22254.Google Scholar
  70. 70.
    Dodson, P. J., Evans, C. S., Harvey, P. J., & Palmer, J. M. (1987). Production and properties of an extracellular peroxidase from Corilus versicolor which catalyzes \({\text{C}}_\alpha {\text{ - C}}_\beta \) cleavage in a lignin model compound. FEMS Microbiology Letter, 42, 17–22.Google Scholar
  71. 71.
    Chung, N., & Aust, S. D. (1995). Inactivation of lignin peroxidase by hydrogen peroxide during the oxidation of phenols. Archives of Biochemistry and Biophysics, 316, 851–855, doi: 10.1006/abbi.1995.1114.Google Scholar
  72. 72.
    Banci, L., Ciofi-Baffoni, S., & Tien, M. (1999). Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry, 38, 3205–3210, doi: 10.1021/bi982139g.Google Scholar
  73. 73.
    Renganathan, V., Miki, K., & Gold, M. H. (1985). Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phanerochate chrysosporium. Archives of Biochemistry and Biophysics, 241, 304–314, doi: 10.1016/0003-9861(85)90387-X.Google Scholar
  74. 74.
    Hammel, K. E., Tien, M., Kalyanaraman, B., & Kirk, T. K. (1985). Mechanism of oxidative \({\text{C}}_\alpha - {\text{C}}_\beta \) cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Journal of Biological Chemistry, 260, 8348–8353.Google Scholar
  75. 75.
    Kirk, T. K., Tien, M., Kersten, P. J., & Mozuch, M. D. (1986). Ligninase of Phanerochaete chrysosporium. Biochemistry Journal, 236, 279–287.Google Scholar
  76. 76.
    Miki, K., Renganathan, V., & Gold, M. H. (1986). Mechanism of β-aryl ether dimeric lignin model compound oxidation by lignin peroxidase of Phanerochaete chrysosporium. Biochemistry, 25, 4790–4796, doi: 10.1021/bi00365a011.Google Scholar
  77. 77.
    Miki, K., Kondo, R., Renganathan, V., Mayfield, M. B., & Gold, M. H. (1988). Mechanism of aromatic ring cleavage of a β-biphenylyl ether dimer catalyzed by lignin peroxidase of Phanerochaete chrysosporium. Biochemistry, 27, 4787–4794, doi: 10.1021/bi00413a031.Google Scholar
  78. 78.
    Umezawa, T., & Higuchi, T. (1989). Cleavages of aromatic ring and β-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEB Letter, 242, 325–329, doi: 10.1016/0014-5793(89)80494-6.Google Scholar
  79. 79.
    Kersten, P. J., Tien, M., Kalyanaraman, B., & Kirk, T. K. (1985). The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. Journal of Biological Chemistry, 260, 2609–2612.Google Scholar
  80. 80.
    Baciocchi, E., Bietti, M., Gerini, M. F., Lanzalunga, O., & Mancinelli, S. (2001b). Oxidation of non-phenolic β-O-aryl-lignin model dimers catalyzed by lignin peroxidase. Comparison with the oxidation induced by potassium 12-tungstocobalt(III)ate. Journal of the Chemical Society, 41, 1506–1511, doi: 10.1039/b101362i, Perkin Trans 2.Google Scholar
  81. 81.
    Lundell, T., Wever, R., Floris, R., Harvey, P., Hatakka, A., Brunow, G., et al. (1993). Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol. European Journal of Biochemistry, 211, 391–402, doi: 10.1111/j.1432-1033.1993.tb17562.x.Google Scholar
  82. 82.
    Harvey, P. J., Schoemaker, H. E., Bowen, R. M., & Palmer, J. M. (1985). Single-electron transfer processes and the reaction mechanism of enzymic degradation of lignin. FEBS Letters, 183, 13–16, doi: 10.1016/0014-5793(85)80943-1.Google Scholar
  83. 83.
    Wariishi, H., Huang, J., Dunford, B., & Gold, M. H. (1991). Reactions of lignin compounds I and II with veratryl alcohol. Journal of Biological Chemistry, 266, 20694–20699.Google Scholar
  84. 84.
    Walling, C., El-Talwi, G. M., & Amarnalth, K. (1984). Oxidation of styrene derivatives by S2O8 2–CuII in acetic acid and acetonitrile. Reaction paths in oxidations via radical cations. Journal of the American Chemical Society, 106, 7373–7578, doi: 10.1021/ja00336a043.Google Scholar
  85. 85.
    Fenn, P., & Kirk, T. K. (1981). Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Archives of Microbiology, 130, 59–65, doi: 10.1007/BF00527073.Google Scholar
  86. 86.
    Faison, B. D., & Kirk, T. K. (1985). Factors involved in the regulation of ligninase activity in Phanerochaete chrysosporium. Applied and Environmental Microbiology, 49, 299–304.Google Scholar
  87. 87.
    Schoemaker, H. E., & Leisola, M. S. A. (1990). Degradation of lignin by Phanerochaete chrysosporium. Journal of Biotechnology, 13, 101–109, doi: 10.1016/0168-1656(90)90096-T.Google Scholar
  88. 88.
    Bietti, M., Baciocchi, E., & Steenken, S. (1998). Lifetime, reduction potential and base-induced fragmentation of the veratryl alcohol radical cation in aqueous solution. Pulse radiolysis studies on a ligninase “mediator”. Journal of Physical Chemistry A, 102, 7337–7342, doi: 10.1021/jp9812482.Google Scholar
  89. 89.
    Harvey, P. J., Schomaker, H. E., & Palmer, J. M. (1986). Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Letters, 195, 242–246, doi: 10.1016/0014-5793(86)80168-5.Google Scholar
  90. 90.
    Khindaria, A., Grover, T. A., & Aust, S. D. (1995). Evidence for formation of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry, 34, 6020–6025, doi: 10.1021/bi00018a003.Google Scholar
  91. 91.
    Khindaria, A., Nie, G., & Aust, S. D. (1997). Detection and characterization of the lignin peroxidase compound II - veratryl alcohol cation radical complex. Biochemistry, 36, 14181–14185 doi: 10.1021/bi9715730.Google Scholar
  92. 92.
    Baciocchi, E., Bietti, M., Gerini, M. F., & Lanzalunga, O. (2002). The mediation of veratryl alcohol in oxidations prompted by lignin peroxidase: the lifetime of veratryl alcohol radical cation. Biochemistry and Biophysics Research Communications, 293, 832–835, doi: 10.1016/S0006-291X(02)00306-6.Google Scholar
  93. 93.
    Schmidt, H. W. H., Haemmerli, S. D., Schoemaker, H. E., & Leisola, M. S. A. (1989). Oxidative degradation of 3,4-dimethoxybenzyl alcohol and its methyl ether by the lignin peroxidase of Phanerochaete chrysosporium. Biochemistry, 28, 1776–1783, doi: 10.1021/bi00430a053.Google Scholar
  94. 94.
    Haemmerli, S. D., Schoemaker, H. E., Schmidt, H. W. H., & Leisola, M. S. A. (1987). Oxidation of veratryl alcohol by the lignin peroxidase of Phanerochaete chrysosporium. Involvement of activated oxygen. FEBS Letters, 220, 149–154, doi: 10.1016/0014-5793(87)80893-1.Google Scholar
  95. 95.
    Have, R. T., & Franssen, M. C. R. (2001). On a revised mechanism of side product formation in the lignin peroxidase catalyzed oxidation of veratryl alcohol. FEBS Letters, 487, 313–317 doi: 10.1016/S0014-5793(00)02379-6.Google Scholar
  96. 96.
    Goodwin, D. C., Aust, S. D., & Grover, T. A. (1995). Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry, 34, 5060–5065, doi: 10.1021/bi00015a017.Google Scholar
  97. 97.
    Tien, M., & Ma, D. (1997). Oxidation of 4-methoxymandelic acid by lignin peroxidase. Journal of Biological Chemistry, 272, 8912–8917, doi: 10.1074/jbc.272.14.8912.Google Scholar
  98. 98.
    Christian, V., Shrivastava, R., Shukla, D., Modi, H., & Vyas, B. R. M. (2005). Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of remazol brilliant blue R. Enzyme Microbial Technology, 36, 426–431, doi: 10.1016/j.enzmictec.2004.06.007.Google Scholar
  99. 99.
    Khindaria, A., Yamazaki, I., & Aust, S. D. (1996). Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry, 35, 6418–6424, doi: 10.1021/bi9601666.Google Scholar
  100. 100.
    Baciocchi, E., Bietti, M., & Steenken, S. (1998). Lifetime, reduction potential and base-induced fragmentation of the veratryl alcohol radical cation in aqueous solution. Pulse radiolysis studies on a ligninase “mediator”. Journal of Physical Chemistry A, 102, 7337–7342, doi: 10.1021/jp9812482.Google Scholar
  101. 101.
    Joshi, D. K., & Gold, M. H. (1996). Oxidation of dimethoxylated aromatic compounds by lignin peroxidase from Phanerochaete chrysosporium. European Journal of Biochemistry, 237, 45–57, doi: 10.1111/j.1432-1033.1996.0045n.x.Google Scholar
  102. 102.
    Kersten, P. J., Kalyanaraman, B., Hammel, K. E., & Reinhammar, B. (1990). Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzene. Biochemistry Journal, 268, 475–480.Google Scholar
  103. 103.
    Cui, F., & Dolphin, D. (1990). The role of manganese in model systems related to lignin biodegradation. Holzforschung, 44, 279–283.Google Scholar
  104. 104.
    Reinhammar, B. R. M. (1972). Oxidation-reduction potentials of the electron acceptors in laccase and stellacyanin. Biochimica et Biophysica Acta, 275, 245–259, doi: 10.1016/0005-2728(72)90045-X.Google Scholar
  105. 105.
    Xu, F., Berka, R. M., Wahleithner, J. A., Nelson, B. A., Shuster, J. R., Brown, S. H., et al. (1998). Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochemistry Journal, 334, 63–70.Google Scholar
  106. 106.
    Hayashi, Y., & Yamazaki, I. (1979). The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidase A2 and C. Journal of Biological Chemistry, 254, 9101–9106.Google Scholar
  107. 107.
    Conroy, C. W., Tyma, P., Daum, P. H., & Erman, J. E. (1978). Oxidation-reduction potential measurements of cytochrome c peroxidase and pH dependent spectral transition in the ferrous enzyme. Biochimica et Biophysica Acta, 537, 62–69.Google Scholar
  108. 108.
    Popp, J. L., & Kirk, T. K. (1991). Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+. Archives of Biochemistry and Biophysics, 268, 145–148, doi: 10.1016/0003-9861(91)90176-J.Google Scholar
  109. 109.
    Bonnarme, P., & Jeffries, T. W. (1990). Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Applied Environmental Microbiology, 56, 210–217.Google Scholar
  110. 110.
    Brown, J. A., Alic, M., & Gold, M. H. (1991). Manganese peroxidase gene transcription in Phanerochaete chrysosporium: Activation by manganese. Journal of Bacteriology, 173, 4101–4106.Google Scholar
  111. 111.
    Gettemy, J. M., Ma, B., Alic, M., & Gold, M. H. (1998). Reverse transcription-PCR analysis of the regulation of the manganese peroxidase gene family. Applied and Environmental Microbiology, 64, 569–574.Google Scholar
  112. 112.
    Alic, M., Akileswaran, L., & Gold, M. H. (1997). Characterization of the gene encoding manganese peroxidase isozyme 3 from Phanerochaete chrysosporium. Biochimica et Biophysica Acta, 1338, 1–7.Google Scholar
  113. 113.
    Mester, T., & Field, J. A. (1997). Optimization of manganese peroxidase production by the white rot fungus Bjerkandera sp. strain BOS55. FEMS Microbiology Letter, 155, 161–168, doi: 10.1111/j.1574-6968.1997.tb13873.x.Google Scholar
  114. 114.
    Mester, T., de Jong, E., & Field, J. A. (1995). Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Applied and Environmental Microbiology, 61, 1881–1887.Google Scholar
  115. 115.
    Pease, E. A., & Tien, M. (1992). Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. Journal of Bacteriology, 174, 3532–3540.Google Scholar
  116. 116.
    Glenn, J. K., & Gold, M. H. (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading Basidiomycete, Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 242, 329–341, doi: 10.1016/0003-9861(85)90217-6.Google Scholar
  117. 117.
    Mino, Y., Wariishi, H., Blackburn, N. J., Loehr, T. M., & Gold, M. H. (1988). Spectral characterization of manganese peroxidase, an extracellular heme enzyme from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Journal of Biological Chemistry, 263, 7029–7036.Google Scholar
  118. 118.
    Sundaramoorthy, M., Kishi, K., Gold, M. H., & Poulos, T. L. (1994). The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-Δ resolution. Journal of Biological Chemistry, 269, 32759–32767.Google Scholar
  119. 119.
    Sundaramoorthy, M., Kishi, K., Gold, M. H., & Poulos, T. L. (1997). Crystal structure of substrate binding site mutants of manganese peroxidase. Journal of Biological Chemistry, 272, 17574–17580, doi: 10.1074/jbc.272.28.17574.Google Scholar
  120. 120.
    Sundaramoorthy, M., Youngs, H. L., Gold, M. H., & Poulos, T. L. (2005). High-resolution crystal structure of manganese peroxidase: Substrate and inhibitor complexes. Biochemistry, 44, 6463–6470, doi: 10.1021/bi047318e.Google Scholar
  121. 121.
    Glenn, J. K., Akileswaran, L., & Gold, M. H. (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 251, 688–696, doi: 10.1016/0003-9861(86)90378-4.Google Scholar
  122. 122.
    Paszczynski, A., Huynh, V. -B., & Crawford R. (1986). Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. 244, 750–765.Google Scholar
  123. 123.
    Wariishi, H., Dunford, H. B., MacDonald, I. D., & Gold, M. H. (1989a). Manganese peroxidase from the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. Journal of Biological Chemistry, 264, 3335–3340.Google Scholar
  124. 124.
    Wariishi, H., Akileswaran, L., & Gold, M. H. (1988). Manganese peroxidase from the Basidiomycete Phanerochaete chrysosporium: Spectral characterization of the oxidized states and the catalytic cycle. Biochemistry, 27, 5365–5370, doi: 10.1021/bi00414a061.Google Scholar
  125. 125.
    Wariishi, H., Valli, K., & Gold, M. H. (1992). Manganese(II) oxidation by manganese peroxidase from the Basidiomycete Phanerochaete chrysosporium. Journal of Biological Chemistry, 267, 23688–23695.Google Scholar
  126. 126.
    Kishi, K., Wariishi, H., Marquez, L., Dunford, H. B., & Gold, M. H. (1994). Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry, 33, 8694–8701, doi: 10.1021/bi00195a010.Google Scholar
  127. 127.
    Kuan, I.-C., Johnson, K. A., & Tien, M. (1993). Kinetic analysis of manganese peroxidase. Journal of Biological Chemistry, 268, 20064–20070.Google Scholar
  128. 128.
    Zapanta, L. S., & Tien, M. (1997). The roles of veratryl alcohol and oxalate in fungal lignin degradation. Journal of Biotechnology, 53, 93–102, doi: 10.1016/S0168-1656(96)01678-1.Google Scholar
  129. 129.
    Khindaria, A., Grover, T. A., & Aust, S. D. (1994). Oxalate-dependent reductive activity of manganese peroxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 314, 301–306, doi: 10.1006/abbi.1994.1446.Google Scholar
  130. 130.
    Urzua, U., Kersten, P. J., & Vicuna, R. (1998). Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Applied and Environmental Microbiology, 64, 68–73.Google Scholar
  131. 131.
    Wariishi, H., Valli, K., Renganathan, V., & Gold, M. H. (1989b). Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemistry, 28, 6017–6023, doi: 10.1021/bi00440a044.Google Scholar
  132. 132.
    Tuor, U., Wariishi, H., Schoemaker, H. E., & Gold, M. H. (1992). Oxidation of phenolic aryglycerol β-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: Oxidative cleavage of an α-carbonyl model compound. Biochemistry, 31, 4986–4995, doi: 10.1021/bi00136a011.Google Scholar
  133. 133.
    Reddy, G. V. B., Sridhar, M., & Gold, M. H. (2003). Cleavage of nonphenolic β-1 diarylpropane lignin model dimers by manganese peroxidase from Phanerochaete chrysosporium. European Journal of Biochemistry, 270, 284–292, doi: 10.1046/j.1432-1033.2003.03386.x.Google Scholar
  134. 134.
    Wariishi, H., Valli, K., Renganathan, V., & Gold, M. H. (1989c). Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. Journal of Biological Chemistry, 264, 14185–14191.Google Scholar
  135. 135.
    Bao, W., Fukushima, Y., Jensen, K. A., Moen, M. A., & Hammel, K. E. (1994). Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Letters, 354, 297–300, doi: 10.1016/0014-5793(94)01146-X.Google Scholar
  136. 136.
    Daina, S., Orlandi, M., Bestetti, G., Wiik, C., & Elegir, G. (2002). Degradation of β-5 lignin model dimers by Ceriporiopsis subvermispora. Enzyme Microbial Technology, 30, 499–505, doi: 10.1016/S0141-0229(01)00524-5.Google Scholar
  137. 137.
    Kapich, A., Hofrichter, M., Vares, T., & Hatakka, V. (1999). Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and 14C-labeled lignins. Biochemical and Biophysical Research Communications, 259, 212–219, doi: 10.1006/bbrc.1999.0742.Google Scholar
  138. 138.
    Kapich, A. N., Steffen, K. T., Hofrichter, M., & Hatakka, A. (2005). Involvement of lipid oxidation in the degradation of a non-phenolic lignin model compound by manganese peroxidase of the litter-decomposing fungus Stropharia coronilla. Biochemical and Biophysical Research Communications, 330, 371–377, doi: 10.1016/j.bbrc.2005.02.167.Google Scholar
  139. 139.
    Wariishi, H., & Gold, M. H. (1990). Lignin peroxidase compound III. Mechanism of formation and decomposition. Journal of Biological Chemistry, 265, 2070–2077.Google Scholar
  140. 140.
    Timofeevski, S. L., Reading, N. S., & Aust, S. D. (1998). Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide. Archives of Biochemistry and Biophysics, 356, 287–295, doi: 10.1006/abbi.1998.0776.Google Scholar
  141. 141.
    Yoshida, H. (1883). Chemistry of lacquer (urushi). Journal of the Chemical Society, 43, 472–486.Google Scholar
  142. 142.
    Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant, M.-L., & Bally, R. (1993). Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiology Letter, 108, 205–210, doi: 10.1111/j.1574-6968.1993.tb06100.x.Google Scholar
  143. 143.
    Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K., & Inamori, Y. (2003). A thermostable laccase from Streptomyces lavendulae REN-7: Purification, characterization, nucleotide sequence, and expression. Bioscience, Biotechnology, and Biochemistry, 67, 2167–2175, doi: 10.1271/bbb.67.2167.Google Scholar
  144. 144.
    Hullo, M.-F., Moszer, I., Danchin, A., & Martin-Verstraete, I. (2001). CotA of Bacillus subtilis is a copper-dependent laccase. Journal of Bacteriology, 183, 5426–5430, doi: 10.1128/JB.183.18.5426-5430.2001.Google Scholar
  145. 145.
    Marco, A. E., & Roubelakis-Angelakis, K. A. (1997). Laccase activity could contribute to cell-wall reconstitution in regenerating protoplasts. Phytochemistry, 46, 421–425, doi: 10.1016/S0031-9422(97)00301-4.Google Scholar
  146. 146.
    Bao, W., O’Malley, D. M., Whetten, R., & Sederoff, R. R. (1993). A laccase associated with lignification in Loblolly pine xylem. Science, 672–674, doi: 10.1126/science.260.5108.672.
  147. 147.
    Sterjiades, R., Dean, J. F. D., Gamble, G., Himmelsbach, D. S., & Eriksson, K. -E. L. (1993). Extracellular laccases and peroxidases from sycamore mapple (Acer psudoplatanus) cell-suspension cultures. Planta, 190, 75–87, doi: 10.1007/BF00195678.Google Scholar
  148. 148.
    Leatham, G. F., & Stahmann, M. A. (1981). Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. Journal of General Microbiology, 125, 147–157.Google Scholar
  149. 149.
    Youn, H.-D., Hah, Y. C., & Kang, S.-O. (1995). Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiology Letter, 132, 183–188, doi: 10.1111/j.1574-6968.1995.tb07831.x.Google Scholar
  150. 150.
    Eggert, C., Temp, U., & Eriksson, K. -E. L. (1997). Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Letters, 407, 89–92, doi: 10.1016/S0014-5793(97)00301-3.Google Scholar
  151. 151.
    Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140, 19–26.Google Scholar
  152. 152.
    Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., et al. (2002). Crystal structure of a four-copper laccase complex with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry, 41, 7325–7333, doi: 10.1021/bi0201318.Google Scholar
  153. 153.
    Ducros, V., Brzozowski, A. M., Wilson, K. S., Brown, S. H., Ostergaard, P., Schneider, P., et al. (1998). Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2Δ resolution. Nature Structural Biology, 5, 310–316, doi: 10.1038/nsb0498-310.Google Scholar
  154. 154.
    Piontek, K., Antorini, M., & Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Δ resolution containing a full complement of coppers. Journal of Biological Chemistry, 277, 37663–37669, doi: 10.1074/jbc.M204571200.Google Scholar
  155. 155.
    Hakulinen, N., Kiiskinen, L.-L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A., et al. (2002). Crystal structure of a laccase of Melanocarpus albomyces with an intact trinuclear copper site. Nature Structural Biology, 9, 601–605.Google Scholar
  156. 156.
    Antorini, M., Herpoel-Gimbert, I., Choinowski, T., Sigoillot, J.-C., Asther, M., Winterhalter, K., et al. (2002). Purification, crystallization and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochimica et Biophysica Acta, 1594, 109–114.Google Scholar
  157. 157.
    Garavaglia, S., Cambria, M. T., Miglio, M., Ragusa, S., Lacobazzi, V., Palmieri, F., et al. (2004). The structure of Rigidoporus lignosus laccase containing a full component of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. Journal of Molecular Biology, 342, 1519–1531, doi: 10.1016/j.jmb.2004.07.100.Google Scholar
  158. 158.
    Enguita, F. J., Martins, L. O., Henriquest, A. O., & Carrondo, M. A. (2003). Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. Journal of Biological Chemistry, 278, 19416–19425, doi: 10.1074/jbc.M301251200.Google Scholar
  159. 159.
    Malkin, R., & Malmstrom, B. G. (1970). The state and function of copper in biological systems. Advance Enzymology, 33, 177.Google Scholar
  160. 160.
    Dooley, D. M., Rawlings, J., Dawson, J. H., Stephens, P. J., Andreasson, L.-E., Malmstrom, B. C., et al. (1979). Spectroscopic studies of Rhus vernicifera and Polyporus versicolor laccase. Electronic structures of the copper sites. Journal of the American Chemical Society, 101, 5038–5046, doi: 10.1021/ja00511a039.Google Scholar
  161. 161.
    Palmer, A. E., Randall, D. W., Xu, F., & Solomon, E. I. (1999). Spectroscopic studies and electronic structure description of the high potential type 1 copper site in fungal laccase: Insight into the effect of the axial ligand. Journal of the American Chemical Society, 121, 7138–7149, doi: 10.1021/ja991087v.Google Scholar
  162. 162.
    Reinhammar, B. R. M., & Vanngard, T. I. (1971). The electron-accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation-reduction titrations. European Journal of Biochemistry, 18, 463–468, doi: 10.1111/j.1432-1033.1971.tb01264.x.Google Scholar
  163. 163.
    Xu, F., Shin, W., Brown, S. H., Wahleithner, J. A., Sundaram, U. M., & Solomon, E. I. (1996). A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochimica et Biophysica Acta, 1292, 303–311.Google Scholar
  164. 164.
    Xu, F. (1996). Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35, 7608–7614, doi: 10.1021/bi952971a.Google Scholar
  165. 165.
    Messerschmidt, A., Ladenstein, R., Huber, R., Bolognesi, M., Avigliano, L., Petruzzelli, R., et al. (1992). Refined crystal structure of ascorbate oxidase at 1.9Δ resolution. Journal of Molecular Biology, 224, 179–205, doi: 10.1016/0022-2836(92)90583-6.Google Scholar
  166. 166.
    Zoppellaro, G., Sakurai, T., & Huang, H.-W. (2001). A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center. Journal of Biochemistry, 129, 949–953.Google Scholar
  167. 167.
    Huang, H.-W., Zopellaro, G., & Sakurai, T. (1999). Spectroscopic and kinetic studies on the oxygen-centered radical formed during the four-electron reduction process of dioxygen by Rhus vernicifera laccase. Journal of Biological Chemistry, 274, 32718–32724, doi: 10.1074/jbc.274.46.32718.Google Scholar
  168. 168.
    Palmer, A. E., Lee, S. K., & Solomon, E. I. (2001). Decay of the peroxide intermediate in laccase: Reductive cleavage of the O-O bond. Journal of the American Chemical Society, 123, 6591–6599, doi: 10.1021/ja010365z.Google Scholar
  169. 169.
    Lee, S.-K., George, S. D., Antholine, W. E., Hedman, B., Hodgson, K. O., & Solomon, E. I. (2002). Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. Journal of the American Chemical Society, 124, 6180–6193, doi: 10.1021/ja0114052.Google Scholar
  170. 170.
    Zoppellaro, G., Huang, H.-W., & Sakurai, T. (2000). Kinetic studies on the reaction of the fully reduced laccase with dioxygen. Inorganic Reaction Mechanisms, 2, 79–84.Google Scholar
  171. 171.
    Lundquist, K., & Kristersson, P. (1985). Exhaustive laccase-catalyzed oxidation of a lignin model compound (vanillyl glycol) produces methanol and polymeric quinoid products. Biochemistry Journal, 259, 277–279.Google Scholar
  172. 172.
    Kawai, S., Umezawa, T., & Higuchi, T. (1999a). Degradation mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Archives of Biochemistry and Biophysics, 262, 99–110, doi: 10.1016/0003-9861(88)90172-5.Google Scholar
  173. 173.
    Faure, D., Bouillant, M. L., Jacoud, C., & Bally, R. (1996). Phenolic derivatives related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry, 42, 357–359, doi: 10.1016/0031-9422(95)00869-1.Google Scholar
  174. 174.
    Kawai, S., Umezawa, T., Shimada, M., & Higuchi, T. (1999b). Aromatic ring cleavage of 4,6-di(tert)guaiacol, a phenolic lignin model compound, by laccause of Coriolus versicolor. FEBS Letters, 236, 309–311, doi: 10.1016/0014-5793(88)80043-7.Google Scholar
  175. 175.
    Bourbonnais, R., & Paice, M. G. (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. 267, 99–102.Google Scholar
  176. 176.
    Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., & Borneman, S. (1997). Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Applied and Environmental Microbiology, 63, 4627–4632.Google Scholar
  177. 177.
    Eggert, C., Temp, U., Dean, J. F. D., & Eriksson, K.-E. L. (1996). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Letters, 391, 144–148, doi: 10.1016/0014-5793(96)00719-3.Google Scholar
  178. 178.
    Fabbrini, M., Galli, C., & Gentili, P. (2002). Comparing the catalytic efficiency of some mediators of laccase. Journal of Molecular Catalysis. B, Enzymatic, 16, 231–240, doi: 10.1016/S1381-1177(01)00067-4.Google Scholar
  179. 179.
    Baiocco, P., Barreca, A. M., Fabbrini, M., Galli, C., & Gentili, P. (2003). Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Organ Biomolecular Chemistry, 1, 191–197, doi: 10.1039/b208951c.Google Scholar
  180. 180.
    Bourbonnais, R., Leech, D., & Paice, M. G. (1998). Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta, 1379, 381–390.Google Scholar
  181. 181.
    Claus, H., Faber, G., & Konig, H. (2002). Redox-mediated decolorization of synthetic dyes by fungal laccases. Applied Microbiology and Biotechnology, 59, 672–678, doi: 10.1007/s00253-002-1047-z.Google Scholar
  182. 182.
    Gutierrez, A., del Rio, J. C., Ibarra, D., Rencoret, J., Romero, J., Speranza, M., et al. (2006a). Enzymatic removal of free and conjugated sterols forming pitch deposits in environmentally sound bleaching of eucalypt paper pulp. Environmental Science & Technology, 40, 3416–3422, doi: 10.1021/es052547p.Google Scholar
  183. 183.
    Gutierrez, A., del Rio, J. C., Rencoret, J., Ibarra, D., & Martinez, A. T. (2006b). Main liphilic extractives in different paper pulp tpes can be removed using the laccase-mediator system. Applied Microbiology and Biotechnology, 72, 845–851, doi: 10.1007/s00253-006-0346-1.Google Scholar
  184. 184.
    Gutierrez, A., Rencoret, J., Ibarra, D., Molina, S., Camareo, S., Romero, J., et al. (2007). Removal of lipophilic extractives from paper by laccase and lignin-derived phenols as natural mediators. Environmental Science & Technology, 41, 4124–4129, doi: 10.1021/es062723+.Google Scholar
  185. 185.
    Kawai, S., Nakagawa, M., & Ohashi, H. (2002). Degradation mechanisms of nonphenolic β-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole. Enzyme Microbial Technology, 30, 482–489, doi: 10.1016/S0141-0229(01)00523-3.Google Scholar
  186. 186.
    Kawai, S., Iwatsuki, M., Nakagawa, M., Inagaki, M., Hamabe, A., & Ohashi, H. (2004). An alternative β-ether cleavage pathway for a non-phenolic β-O-4 lignin model dimer catalyzed by a laccase-mediator system. Enzyme Microbial Technology, 35, 154–160, doi: 10.1016/j.enzmictec.2004.03.019.Google Scholar
  187. 187.
    Li, K., Xu, F., & Eriksson, K.-E. L. (1999). Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Applied and Environmental Microbiology, 65, 2654–2660.Google Scholar
  188. 188.
    Hirai, H., Shibata, H., Kawai, S., & Nishida, T. (2006). Role of 1-hydroxybenzotriazole in oxidation by laccase from Trametes versicolor. Kinetic analysis of the laccase-1-hydroxybenzotriazole couple. FEMS Microbiology Letter, 265, 56–59, doi: 10.1111/j.1574-6968.2006.00474.x.Google Scholar
  189. 189.
    Mester, T., & Field, J. A. (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. Journal of Biological Chemistry, 15412–15417, doi: 10.1074/jbc.273.25.15412.
  190. 190.
    Moreira, P., Duez, G., Dehareng, D., Antunes, A., Almeida-Vara, E., Frere, J. M., et al. (2005). Molecular characterization of a versatile peroxidase from a Bjerkandera strain. Journal of Biotechnology, 118, 339–352, doi: 10.1016/j.jbiotec.2005.05.014.Google Scholar
  191. 191.
    Martinez, M., Ruiz-Duenas, F. J., Guillen, F., & Martinez, A. T. (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. European Journal of Biochemistry, 237, 424–432, doi: 10.1111/j.1432-1033.1996.0424k.x.Google Scholar
  192. 192.
    Heinfling, A., Ruiz-Duenas, F. J., Martinez, M. J., Berbauer, M., Szewzyk, U., & Martinez, A. T. (1998). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Letters, 428, 141–146, doi: 10.1016/S0014-5793(98)00512-2.Google Scholar
  193. 193.
    Wang, Y., Vazquez-Duhalt, R., & Pickard, M. A. (2003). Manganese-lignin peroxidase hybride from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. 49, 675–682.Google Scholar
  194. 194.
    Camarero, S., Bockle, B., Martinez, M. J., & Martinez, A. T. (1996). Manganese-mediated lignin degradation by Pleurotus pulmonarius. Applied and Environmental Microbiology, 62, 1070–1072.Google Scholar
  195. 195.
    Camarero, S., Sarkar, S., Ruiz-Duenas, F. J., Martinez, M. J., & Martinez, A. T. (1999). Description of a versatile peroxidase involved in the natural degradation of lignin that has been manganese peroxidase and lignin peroxidase substrate interaction sites. Journal of Biological Chemistry, 274, 10324–10330, doi: 10.1074/jbc.274.15.10324.Google Scholar
  196. 196.
    Kamitsuji, H., Honda, Y., Watanabe, T., & Kuwahara, M. (2005). Mn2+ is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochemistry Biophysics Research Communication, 327, 871–876, doi: 10.1016/j.bbrc.2004.12.084.Google Scholar
  197. 197.
    Rodakiewicz-Nowak, J., Jarosz-Wilkolazka, A., & Luterek, J. (2006). Catalytic activity of versatile peroxidase from Bjerkandera fumosa in aqueous solutions of water-miscible organic solvents. Applied Catalysis A: General, 308, 56–61, doi: 10.1016/j.apcata.2006.04.009.Google Scholar
  198. 198.
    Ruiz-Duenas, F. J., Martinez, M. J., & Martinez, A. T. (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Molecular Microbiology, 31, 223–235, doi: 10.1046/j.1365-2958.1999.01164.x.Google Scholar
  199. 199.
    Ruiz-Duenas, F. J., Morales, M., Perez-Boada, M., Choinowski, T., Martinez, M. J., Piontek, K., et al. (2007). Manganese oxidation site in Pleurotus eryngii versatile peroxidase: A site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry, 46, 66–77, doi: 10.1021/bi061542h.Google Scholar
  200. 200.
    Perez-Boada, M., Ruiz-Duenas, F. J., Pogni, R., Basosi, R., Choinowski, T., Martinez, M., et al. (2005). Versatile peoxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. Journal of Molecular Biology, 354, 385–402, doi: 10.1016/j.jmb.2005.09.047.Google Scholar
  201. 201.
    Pongi, R., Camilla Baratto, M., Teutloff, C., Giansanti, S., Ruiz-Duenas, F. J., Choinowski, T., et al. (2006). A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii. Journal of Biological Chemistry, 281, 9517–9526.Google Scholar
  202. 202.
    Johjima, T., Itoh, H., Kabuto, M., Tokimura, F., Nakagawa, T., Wariishi, H., et al. (1999). Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proceedings of the National Academy of Sciences of the USA, 96, 1989–1994, doi: 10.1073/pnas.96.5.1989.Google Scholar
  203. 203.
    Pogni, R., Camilla Baratto, M., Giansanti, S., Teutloff, C., Verdin, J., Valderrama, B., et al. (2005). Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry, 44, 4267–4274, doi: 10.1021/bi047474l.Google Scholar
  204. 204.
    Camarero, S., Ruiz-Duenas, J., Sarkar, S., Martinez, M. J., & Martinez, A. T. (2000). The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. FEMS Microbiology Letter, 191, 37–43, doi: 10.1111/j.1574-6968.2000.tb09316.x.Google Scholar
  205. 205.
    Tinoco, R., Verdin, J., & Vazquez-Duhalt, R. (2007). Role of oxidizing mediators and tryptophan 172 in the decoloration of industrial dyes by the versatile peroxidases from Bjerkandera adusta. Journal of Molecular Catalysis. B, Enzymatic, 46, 1–7, doi: 10.1016/j.molcatb.2007.01.006.Google Scholar
  206. 206.
    Mester, T., & Tien, M. (2001). Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 284, 723–728, doi: 10.1006/bbrc.2001.5015.Google Scholar
  207. 207.
    Mester, T., & Tien, M. (2000). Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. International Biodeterioration & Biodegradation, 46, 51–59, doi: 10.1016/S0964-8305(00)00071-8.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Western Regional Research CenterUSDA-ARSAlbanyUSA

Personalised recommendations