Applied Biochemistry and Biotechnology

, Volume 150, Issue 3, pp 267–279 | Cite as

Talaromyces thermophilus β-d-Xylosidase: Purification, Characterization and Xylobiose Synthesis

Article

Abstract

When grown on wheat bran as the only carbon source, the filamentous fungus Talaromyces thermophilus produces large amounts of β-xylosidase activity. The presence of glucose drastically decreases the β-xylosidase production level. The β-xylosidase of T. thermophilus was purified by ammonium sulfate precipitation, DEAE–cellulose chromatography, and gel filtration (high-performance liquid chromatography). The molecular mass of the enzyme was estimated to be 97 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration. The enzyme activity was optimum at 50 °C and pH 7. The apparent Michaelis constant K m of the β-xylosidase was 2.37 mM for p-nitrophenyl-β-d-xylopyranoside, with a V max of 0.049 μmol min−1 per milligram protein. Enzyme activity was inhibited by Cu2+, Hg2+, and Zn2+ and activated by Ca2+, Mn2+, and Co+ at a concentration of 5 mM. At high xylose concentration, this enzyme catalyses the condensation reaction leading to xylobiose production.

Keywords

Talaromyces thermophilus β-xylosidase Thermostability Xylan p-Nitropenyl β-d-xylopyranoside 

Notes

Acknowledgment

This work have been supported by grants from the Tunisian government Contrat-Programme, Ministère de l’Enseignement Supérieur de la Recherche Scientifique et de la Technologie of Tunisia. The authors wish to express their thanks to Mr. Anouar Smaoui from FSS for his valuable proofreading of the English of the present paper.

References

  1. 1.
    Coughlan, M. P., & Hazlewood, G. P. (1993). Biotechnology and Applied Biochemistry, 17, 259–289.Google Scholar
  2. 2.
    Carpita, N. C. (1996). Annual Review of Plant Physiology and Plant Molecular Biology, 47, 445–476.CrossRefGoogle Scholar
  3. 3.
    Biely, P. (1985). Trends in Biotechnology, 3, 286–290.CrossRefGoogle Scholar
  4. 4.
    Bajpai, P. (1997). Advances in Applied Microbiology, 43, 141–194.CrossRefGoogle Scholar
  5. 5.
    Wheals, A. E., Basso, L. C., Alves, D. M. G., & Amorim, H. V. (1999). Trends in Biotechnology, 17, 482–487.CrossRefGoogle Scholar
  6. 6.
    Poutanen, K., & Plus, J. (1988). Applied Microbiology and Biotechnology, 28, 425–432.CrossRefGoogle Scholar
  7. 7.
    Saha, B. C., & Bothast, R. J. (1999). In S. H. Imam, R. V. Greene, & B. R. Zaidi (Eds.), Biopolymers: Utilizing nature’s advanced materials (pp. 167–194). ACS Symposium Series 723, Washington, DC.Google Scholar
  8. 8.
    Rizzatti, A. C. S., Jorge, J. A., Terenzi, H. F., Rechia, C. G. V., & Polizeli, M. L. T. M. (2001). Journal of Industrial Microbiology and Biotechnology, 26, 156–160.CrossRefGoogle Scholar
  9. 9.
    Almeida, E. M. D., Lourdes, M. D., Polizeli, T. M., Terenzi, H. F., & Jorge, J. A. (1995). FEMS Microbiology Letters, 130, 171–176.CrossRefGoogle Scholar
  10. 10.
    Zanoela, F. F., Teixeira, M. L. T. M., Terenzi, H. F., & Jorgen, J. A. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 170–176.Google Scholar
  11. 11.
    Henrisaat, B., & Bairoch, A. (1996). Biochemical Journal, 316, 695–696.Google Scholar
  12. 12.
    Maalej, I. (2004). Master of Biotechnology, Faculté de pharmacie de Monastir, Tun.Google Scholar
  13. 13.
    Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–413.CrossRefGoogle Scholar
  14. 14.
    Yanai, T., & Sato, M. (2001). Bioscience, Biotechnology, and Biochemistry, 65, 527–533.CrossRefGoogle Scholar
  15. 15.
    Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.CrossRefGoogle Scholar
  16. 16.
    Miller, G. L. (1959). Analytical Chemistry, 3, 1426–428.Google Scholar
  17. 17.
    Laemmli, U. K., & Favre, M. (1973). Journal of Molecular Biology, 80, 575–599.CrossRefGoogle Scholar
  18. 18.
    Vargas, A. S., Polizeli, M. T. L. M., Terenzi, H. F., & Joao, A. J. (2004). Process Biochemistry, 39, 1931–1938.CrossRefGoogle Scholar
  19. 19.
    Lenartovicz, V., Souza, C. G. M., Moreira, F. G., & Peralta, R. M. (2003). Process Biochemistry, 38, 1775–1780.CrossRefGoogle Scholar
  20. 20.
    Matsuo, M., & Yasui, T. (1984). Agricultural and Biological Chemistry, 48, 1845–1852.Google Scholar
  21. 21.
    Kiss, T., & Kiss, L. (2000). World Journal of Microbiology and Biotechnology, 16, 465–470.CrossRefGoogle Scholar
  22. 22.
    Tuohy, M. G., Puls, J., Claeysens, M., Vrsanska, M., & Coughlan, M. P. (1993). Biochemical Journal, 290, 515–523.Google Scholar
  23. 23.
    Matsuo, M., Yasui, T., & Kobayashi, T. (1977). Agricultural and Biological Chemistry, 41, 1593–1599.Google Scholar
  24. 24.
    Katapodis, P., Nerinckx, W., Claeyssens, M., & Christakopoulos, P. (2006). Process Biochemistry, 41, 2402–2409.CrossRefGoogle Scholar
  25. 25.
    Kumar, S., & Ramón, D. (1996). FEMS Microbiology Letters, 135, 287–293.Google Scholar
  26. 26.
    Wong, K. K. Y., & Saddler, J. N. (1993). In M. P. Coughlan & G. P. Hazlewood (Eds.), Hemicellulose and hemicellulases (pp. 127–143). London: Portland Press.Google Scholar
  27. 27.
    Manzanares, P., Ramon, D., & Querol, A. (1999). International Journal of Food Microbiology, 46, 105–112.CrossRefGoogle Scholar
  28. 28.
    Ravet, C., Thomas, D., & Legoy, M. D. (1993). Biotechnology and Bioengineering, 42, 303–330.CrossRefGoogle Scholar
  29. 29.
    Iizuka, Y., Shinoyama, H., Kamiyama, Y., & Yasui, T. (1992). Bioscience, Biotechnology, and Biochemistry, 56, 331–332.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Mohamed Guerfali
    • 1
  • Ali Gargouri
    • 1
  • Hafedh Belghith
    • 1
  1. 1.Laboratoire de Génétique Moléculaire des Eucaryotes, Centre de Biotechnologie de SfaxSfaxTunisia

Personalised recommendations