Applied Biochemistry and Biotechnology

, Volume 152, Issue 1, pp 74–87 | Cite as

Protein Enrichment of Apple Pomace and Use in Feed for Nile Tilapia

  • Francielo Vendruscolo
  • Cristiéle da Silva Ribeiro
  • Elisa Esposito
  • Jorge Luiz NinowEmail author


The purpose of this paper is to investigate the protein enrichment of apple pomace by Gongronella butleri through solid-state cultivation and addition of this material as feed for tilapia fry (Oreochromis niloticus). Factorial experimental design was used for the assessment of culture conditions to determine the effects of the source of nitrogen, initial moisture, and granulometry on the protein enrichment of apple pomace. During culture, the consumption of reducing sugars and the production of soluble protein were determined. The best conditions obtained were with urea (5% w/w), initial moisture of 70% and granulometry in the range from 0.85 to 1.70 mm, producing 19.63% of soluble protein. The fry submitted to the diet containing treated apple pomace presented an increase of 44% in body mass, demonstrating that apple pomace biotransformed may represent an excellent food supplement.


Protein enrichment Apple pomace Solid-state cultivation Tilapia fry Agro-industrial residues 



The authors wish to thank the Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Foundation for the Support of Research in the State of São Paulo, Process Number 05/55837-6) for financial support, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-The National Council for Scientific and Technological Development) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Coordination for Profesional Enrichment for Higher Education) for research scholarships, and the company Yakult S.A. Finally, we wish to thank Robert Samohyl for technical support.


  1. 1.
    Anupama, R., & Ravindra, P. (2000). Biotechnology Advances, 18, 459–479.CrossRefGoogle Scholar
  2. 2.
    Singh, A., Abidi, A. B., Agarwal, A. K., & Dharmwal, N. S. (1998). Zentralbl Microbiol, 3, 149–181.Google Scholar
  3. 3.
    El-Saadany, R., Khalaf, H., El-Manawaty, H., & Salom, F. (1988). Acta-Alimentus, 17, 376–377.Google Scholar
  4. 4.
    Kolani, S., Delgenes, J. P., Moletta, R., Traore, Q., & Doh, A. (1996). Bioresource Technology, 57, 275–281.CrossRefGoogle Scholar
  5. 5.
    Kim, J. H., & Lebeault, J. M. (1981). European Journal of Applied Microbiology and Biotechnology, 13, 151–154.CrossRefGoogle Scholar
  6. 6.
    Zadrazil, F., & Puniya, A. K. (1995). Bioresource Technology, 54, 85–87.CrossRefGoogle Scholar
  7. 7.
    Del Bianchi, V. L., Moraes, I. O., & Capalbo, D. M. F. (2001) In Schmidell, W., et al. (Eds.), Biotecnologia industrial, vol. 2: Fermentação em Estado Sólido (pp. 247–270). São Paulo, Brasil: Edgard Blücher.Google Scholar
  8. 8.
    Martins, E. S., Silva, D., Da Silva, R., & Gomes, E. (2002). Process Biochemistry, 37, 949–954.CrossRefGoogle Scholar
  9. 9.
    Balasubramaniem, A. K., Nagarajan, K. V., & Paramasamy, G. (2001). Process Biochemistry, 36, 1241–1247.CrossRefGoogle Scholar
  10. 10.
    Jecu, L. (2000). Industrial Crops and Products, 11, 1–5.CrossRefGoogle Scholar
  11. 11.
    Benjamin, S., & Pandey, A. (2000). Brazilian Archives of Biology and Technology, 43(5), 453–460.CrossRefGoogle Scholar
  12. 12.
    Ghanem, N. B., Yusef, H. H., & Mahrouse, H. K. (2000). Bioresource Technology, 73, 113–121.CrossRefGoogle Scholar
  13. 13.
    Ikasari, L., & Mitchell, D. A. (1996). Enzyme and Microbial Technology, 19, 171–175.CrossRefGoogle Scholar
  14. 14.
    ABPM-Associação Brasileira dos Produtores de Maçãs. Available from: Accessed August 22, 2007.
  15. 15.
    Berovic, M., & Ostroversnik, H. (1997). Journal of Biotechnology, 53, 47–53.CrossRefGoogle Scholar
  16. 16.
    Albuquerque, P. M., Koch, F., Trossini, T. G., Esposito, E., & Ninow, J. L. (2006). Brazilian Archives of Biology and Technology, 49, 91–100.CrossRefGoogle Scholar
  17. 17.
    Villas-Bôas, S. G., & Esposito, E. (2000). Biotecnologia, Ciência & Desenvolvimento, 14, 38–42.Google Scholar
  18. 18.
    Villas-Bôas, S. G., Esposito, E., & Mitchell, D. A. (2002). Journal of Animal Feed Science and Technology, 98, 1–12.CrossRefGoogle Scholar
  19. 19.
    Foo, L. Y., & Lu, Y. (1999). Food Chemistry, 64, 511–518.CrossRefGoogle Scholar
  20. 20.
    Zheng, Z., & Shetty, K. (1998). Journal of Agricultural and Food Chemistry, 46, 783–787.CrossRefGoogle Scholar
  21. 21.
    Zheng, Z., & Shetty, K. (2000). Process Biochemistry, 36, 79–84.CrossRefGoogle Scholar
  22. 22.
    Jin, H., Kim, H. S., Kim, S. K., Shin, M. K., Kim, J. H., & Lee, J. W. (2002). Enzyme and Microbial Technology, 30, 822–827.CrossRefGoogle Scholar
  23. 23.
    Vendruscolo, F., Koch, F., Pitol, L. O., & Ninow, J. L. (2007). Revista Brasileira de Tecnologia Agroindustrial, 1, 53–57.Google Scholar
  24. 24.
    Favela-Torres, E., Volke-Sepulveda, T., & Viniegra-Gonzalvez, G. (2006). Production of hydrolytic depolymerising pectinases. Food Technology and Biotechnology, 44, 221–227.Google Scholar
  25. 25.
    Shrikot, C. K., Sharma, N., & Sharma, S. (2004). Apple pomace: An alternative substrate for xylanase production by na alkalophilic Bacillus macerans by using solid-state fermentation. Journal of Microbial World, 6, 20–26.Google Scholar
  26. 26.
    Shojaosadati, S. A., & Babaeipour, V. (2002). Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Process Biochemistry, 37, 909–914.CrossRefGoogle Scholar
  27. 27.
    Bhalla, T. C., & Joshi, M. (1994). Protein enrichment of apple pomace by co-culture of cellulolytic moulds and yeasts. World Journal of Microbiology & Biotechnology, 10, 116–117.CrossRefGoogle Scholar
  28. 28.
    Devrajan, A., Joshi, V. K., Gupta, K., Sheikher, C., & Lal, B. B. (2004). Evaluation of apple pomace based reconstituted feed in rats after solid state fermentation and ethanol recovery. Brazilian Archives of Biology and Technology, 47, 93–106.CrossRefGoogle Scholar
  29. 29.
    Zheng, Z., & Shetty, K. (2000). Solid state production of polygalacturonase by Lentinus edodes using fruit processing wastes. Process Biochemistry, 35, 825–830.CrossRefGoogle Scholar
  30. 30.
    Worral, J. J., & Yang, C. S. (1992). Shiitake and oyster mushroom production on apple pomace and sawdust. HortScience, 27, 1131–1133.Google Scholar
  31. 31.
    Ngadi, M. O., & Correia, L. R. (1992a). Kinetics of solid state ethanol fermentation from apple pomace. Journal of Food Engineering, 17, 97–116.CrossRefGoogle Scholar
  32. 32.
    Ngadi, M. O., & Correia, L. R. (1992b). Solid state ethanol fermentation of apple pomace as affected by moisture and bioreactor mixing speed. Journal of Food Science, 57, 667–670.CrossRefGoogle Scholar
  33. 33.
    Paganini, C., Nogueira, A., Silva, N. C., & Wosiacki, G. (2005). Utilization of apple pomace for ethanol production and food fiber obtainment. Ciência Agrotécnica, Lavras, 29, 1231–1238.Google Scholar
  34. 34.
    Bramorski, A., Soccol, C. R., Christen, P., & Revah, S. (1998). Fruit aroma production by Ceratocystis fimbriata in solid cultures from agroindustrial wastes. Revista de Microbiologia (online), 29. Available from World Wide Web:< lng=en&nrm=iso>.
  35. 35.
    Tsurumi, R., Shiraishi, S., Ando, Y., Yanagida, M., & Takeda, K. (2001). Production of flavor compounds from apple pomace. Nippon Shokuhin Kagaku Kogaku Kaishi, 48, 564–569.Google Scholar
  36. 36.
    Medeiros, A. B. P., Pandey, A., Vandenberghe, L. P. S., Pastore, G. M., & Soccol, C. R. (2006). Production and recovery of aroma compounds produced by solid-state fermentation using different adsorbents. Food Technology and Biotechnology, 44, 47–51.Google Scholar
  37. 37.
    Foo, L. Y., & Lu, Y. (1999). Isolation and identification of procyanidins in apple pomace. Food Chemistry, 64, 511–518.CrossRefGoogle Scholar
  38. 38.
    Lu, Y., & Foo, L. Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry, 68, 81–85.CrossRefGoogle Scholar
  39. 39.
    Grigelmo-Miguel, N., & Martín-Belloso, O. (1999). Comparison of dietary fibre from by-products of processing fruits and greens and from cereals. LWT-Food Science and Technology, 32, 503–508.Google Scholar
  40. 40.
    Masoodi, F. A., Sharma, B., & Chauhan, G. S. (2002). Use of apple pomace as a source of dietary fiber in cakes. Plant Foods for Human Nutrition, 57, 121–128.CrossRefGoogle Scholar
  41. 41.
    El-Sayed, A. F. M. (1999). Aquaculture, 179, 149–168.CrossRefGoogle Scholar
  42. 42.
    Cavalheiro, J. M. O., Souza, E. O., & Bora, P. S. (2007). Bioresource Technology, 98, 602–606.CrossRefGoogle Scholar
  43. 43.
    Sabra, G. E. (2004). Master’s degree dissertation. Universidade de Mogi das Cruzes, Mogi das Cruzes, BR.Google Scholar
  44. 44.
    Ulloa Rojas, J. B., & Verreth, J. A. J. (2003). Aquaculture, 217, 275–283.CrossRefGoogle Scholar
  45. 45.
    Dabrowski, M., El-Saidy, A. F. M., & Wisner, N. (2002). Aquaculture Nutrition, 7, 189–195.Google Scholar
  46. 46.
    Dongmeza, E., Siddhuraju, P., Francis, G., & Becker, K. (2006). Aquaculture, 261, 407–422.CrossRefGoogle Scholar
  47. 47.
    Novoa, M. A. O., Palacios, C. A. M., & Castilho, L. O. (2002). Aquaculture Nutrition, 8, 257–263.CrossRefGoogle Scholar
  48. 48.
    Abdolsamad, K. A., Verreth, J. A. J., & Schrama, J. W. (2006). Aquaculture, 260, 194–205.CrossRefGoogle Scholar
  49. 49.
    Lowry, O. H., Rosebrough, N. J., & Farr, A. L. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  50. 50.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  51. 51.
    AOAC (1995). Association of official analytical chemists. Ed—Official Methods of Analysis (16th Ed.). Washington, 1094 p.Google Scholar
  52. 52.
    APHA (1995). Standard methods for the examination of water and wastewater (19th Ed.). Washington: American Public Health Association.Google Scholar
  53. 53.
    Bisaria, R., Madan, M., & Vasudevan, P. (1997). Bioresource Technology, 59, 5–8.CrossRefGoogle Scholar
  54. 54.
    Baccarin, A. E., & Pezzato, L. E. (2001). Pesquisa Agropecuaâria Brasileira, 36, 549–556.Google Scholar
  55. 55.
    Davies, S., & Wareham, H. (1988). Aquaculture, 73, 189–199.CrossRefGoogle Scholar
  56. 56.
    Mahnken, C. V. W., Spinelli, J., & Waknitz, F. W. (1980). Aquaculture, 20, 41–56.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Francielo Vendruscolo
    • 1
  • Cristiéle da Silva Ribeiro
    • 2
  • Elisa Esposito
    • 2
  • Jorge Luiz Ninow
    • 1
    Email author
  1. 1.Departamento de Engenharia Química e Engenharia de Alimentos, Centro TecnológicoUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Núcleo de Ciências AmbientaisUniversidade de Mogi das CruzesMogi das CruzesBrazil

Personalised recommendations