Applied Biochemistry and Biotechnology

, Volume 152, Issue 1, pp 117–126 | Cite as

Bioleaching of Zinc and Iron from Steel Plant Waste using Acidithiobacillus Ferrooxidans

  • Oktay Bayat
  • Efsun Sever
  • Belgin Bayat
  • Volkan Arslan
  • Colin Poole
Article

Abstract

The bacterial leaching of zinc and iron from solid wastes at the Isdemir iron and steel plant has been investigated using Acidithiobacillus ferrooxidans as the bacterial agent. The effects of a range of operational parameters, including particle size, solids concentration and pH, on the efficiency of the bioleaching process were investigated. In each test, several variables were determined to assess the efficiency of leaching, including slurry pH and redox potential, temperature, bacteria population and concentrations of zinc and iron in solution. Experimental results demonstrated that pulp solids concentration, slurry pH and solids particle size were all important parameters in the bacterial leaching process. Maximum extraction was achieved at pH values around 1.3 and a solids concentration of 1% w/v, with 35% of the Zn content and 37% of the Fe being dissolved.

Keywords

Iron ores Tailings Bacteria Bioleaching Recycling Waste processing Acidithiobacillus ferrooxidans 

Notes

Acknowledgements

Financial support for this work was provided under project MMF2004-BAP7. The authors also wish to thank Isdemir AS for providing test samples and laboratory facilities.

References

  1. 1.
    Szekely, J. (1996). Steelmaking and industrial ecology is steel a green material? ISIJ International, 36, 121–135.CrossRefGoogle Scholar
  2. 2.
    Leclerc, N., Meux, E., & Lecuire, J. M. (2003). Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 70, 175–183.CrossRefGoogle Scholar
  3. 3.
    Thakur, P. K. (2000). Utilization of steel melting slag to generate wealth from waste. Proceedings of conference on environmental management in metallurgical industries, BHU, Varanasi, India (pp. 187–193).Google Scholar
  4. 4.
    Yadav, U. S., Das, B. K., & Kumar, A. (2001). Recovery of mineral values from integrated steel plant waste. Proceedings of 6th southern hemisphere meeting on mineral technology, Brazil (pp. 719–725).Google Scholar
  5. 5.
    Zhao, Y., & Stanforth, R. (2000). Extraction of zinc from zinc ferrites by fusion with caustic soda. Minerals Engineering, 13, 1417–1421.CrossRefGoogle Scholar
  6. 6.
    Olper, M. (1985). Recycling of metals and engineered materials. Minerals Metals and Materials Society, (pp. 563–578).Google Scholar
  7. 7.
    Lundgren, D. G., Vakova-Valchanova, M., & Reed, R. (1986). Chemical reactions important in bioleaching and bioaccumulation. Biotechnology and Bioengineering Symposium, 16, 7–21.Google Scholar
  8. 8.
    Zunkel, A. D. (1997). Electric arc furnace dust management: A review of technologies. Iron and Steel Engineer, 74(3), 33–38.Google Scholar
  9. 9.
    Haddadin, J., Dagot, C., & Fick, M. (1995). Models of bacterial leaching. Enzyme and Microbial Technology, 17, 290–305.CrossRefGoogle Scholar
  10. 10.
    Sampson, M. I., Phillips, C. V., & Blake, R. C. (2000). Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulphides. Minerals Engineering, 13, 373–389.CrossRefGoogle Scholar
  11. 11.
    Sand, W., Gehrke, T., Jozsa, D. G., & Schippers, A. (2001). Biochemistry of bacterial leaching direct versus indirect bioleaching. Hydrometallurgy, 59, 159–175.CrossRefGoogle Scholar
  12. 12.
    Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching review part B. Progress in bioleaching applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63, 249–257.CrossRefGoogle Scholar
  13. 13.
    Rodriguez, Y., Ballester, A., Blazquez, M. L., Gonzalez, F., & Munoz, J. A. (2003). New information on the sphalerite bioleaching mechanism at low and high temperature. Hydrometallurgy, 71, 57–66.CrossRefGoogle Scholar
  14. 14.
    Gupta, A., Birendra, K., & Mishra, R. (2003). Study on the recovery of zinc from Moore cake: A biotechnological approach. Minerals Engineering, 16, 41–43.CrossRefGoogle Scholar
  15. 15.
    Mulligan, C. N., Kamali, M., & Gibbs, B. F. (2004). Bioleaching of heavy metals from a low grade ore using Aspergillus niger. Journal of Hazardous Materials, 110, 77–84.CrossRefGoogle Scholar
  16. 16.
    Liao, M. X., & Deng, T. L. (2004). Zinc and lead extraction from complex raw sulphides by sequential bioleaching and acidic brine leach. Minerals Engineering, 17, 17–22.CrossRefGoogle Scholar
  17. 17.
    Pina, P. S., Leao, V. A., Silva, C. A., Daman, D., & Frenay, Y. J. (2005). The effect of ferrous and ferric iron and sphalerite bioleaching with Acidithiobacillus sp. Minerals Engineering, 18, 549–551.CrossRefGoogle Scholar
  18. 18.
    Keeling, S. E., Palmer, M. L., Caracatsanis, F. C., Johnson, J. A., & Watling, H. R. (2005). Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap. Minerals Engineering, 18, 1289–1296.CrossRefGoogle Scholar
  19. 19.
    Shi, S., Fang, Z., & Ni, J. (2006). Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41, 438–446.CrossRefGoogle Scholar
  20. 20.
    Mack, C., Wilhelmi, B., Duncan, J. R., & Burgess, J. E. (2007). Biosorption of precious metals. Biotechnology Advances, 25, 264–271.CrossRefGoogle Scholar
  21. 21.
    de Souza, A. D., Pina, P. S., & Leão, V. A. (2007). Bioleaching and chemical leaching as an integrated process in the zinc industry. Minerals Engineering, 20, 591–599.CrossRefGoogle Scholar
  22. 22.
    Veglio, F., Beolchini, F., Nardini, A., & Toro, L. (2000). Bioleaching of a pyrrhotite ore by sulfo-oxidans strain. Chemical Engineering Science, 55, 783–795.CrossRefGoogle Scholar
  23. 23.
    Wong, J. K., & Henry, J. G. (1988). Bacterial leaching of heavy metals from anaerobically digested sludge. In D. L. Wise (Ed.), Biotreatment systems (pp. 125–169). Boca Raton, FL: CRC.Google Scholar
  24. 24.
    Jensen, A. B., & Webb, C. (1995). Ferrous sulphate oxidation using Thiobacillus ferrooxidans: A review. Process Biochemistry, 30, 225–236.CrossRefGoogle Scholar
  25. 25.
    Silverman, P., & Lundgren, D. G. (1969). Studies on chemoautotrophic bacterium ferrobacillus ferroxidans. Journal of Bacteria, 77, 642–647.Google Scholar
  26. 26.
    Ronald, M. A. (1997). Handbook of microbiological media, (2nd ed.). New York: CPC Press Co.Google Scholar
  27. 27.
    Blancarte-Zurita, M. A., Branion, R. M. R., & Lawrence, R. W. (1987). Application of a shrinking particle model to the kinetics of microbiological leaching. In R. W. Lawrence, R. M. R. Branion, & H. G. Ebner (Eds.), Fundamental and applied biohydrometallurgy (pp. 243–253). Amsterdam: Elsevier.Google Scholar
  28. 28.
    Froment, G. F., & Bischoff, K. B. (1979). Chemical reactor analysis and design. New York: Wiley.Google Scholar
  29. 29.
    Woznick, D. J., & Huang, J. Y. C. (1991). Variables affecting metal removal from sludge. Journal of Water Pollution Control, 54, 1574–1580.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Oktay Bayat
    • 1
  • Efsun Sever
    • 2
  • Belgin Bayat
    • 3
  • Volkan Arslan
    • 1
  • Colin Poole
    • 4
  1. 1.Department of Mining EngineeringCukurova UniversityBalcaliTurkey
  2. 2.Akdeniz Petrolleri ASAdanaTurkey
  3. 3.Department of Environmental EngineeringCukurova UniversityBalcaliTurkey
  4. 4.School of Process, Environmental and Materials EngineeringUniversity of LeedsLeedsUK

Personalised recommendations