Synthesis of Cephalexin in Aqueous Medium with Carrier-bound and Carrier-free Penicillin Acylase Biocatalysts

Article

Abstract

The use of very high substrate concentrations favors the kinetically controlled synthesis of cephalexin with penicillin acylase (PA) not only by Michaelian considerations, but also because water activity is depressed, so reducing the rates of the competing reactions of product and acyl donor hydrolysis. Commercial PGA-450, glyoxyl agarose immobilized (PAIGA) and carrier-free cross-linked enzyme aggregates of penicillin acylase (PACLEA) were tested in aqueous media at concentrations close to the solubility of nucleophile and at previously determined enzyme to nucleophile and acid donor to nucleophile ratios. The best temperature and pH were determined for each biocatalyst based on an objective function considering conversion yield, productivity, and enzyme stability as evaluation parameters. Stability was higher with PAIGA and specific productivity higher with PACLEA, but best results based on such objective function were obtained with PGA-450. Yields were stoichiometric and productivities higher than those previously reported in organic medium, which implies significant savings in terms of costs and environmental protection. At the optimum conditions for the selected biocatalyst, operational stability was determined in sequential batch reactor operation. The experimental information gathered is being used for a technical and economic evaluation of an industrial process for enzymatic production of cephalexin in aqueous medium.

Keywords

Penicillin acylase Enzyme immobilization Cephalexin Cross-linked enzyme aggregates Multipoint covalent attachment 

References

  1. 1.
    Švedas, V., Savchenko, M., Beltser, A., & Guranda, D. (1996). Annals of the New York Academy of Sciences, 799, 659–669.CrossRefGoogle Scholar
  2. 2.
    Fité, M., Capellas, M., Benaiges, M., Caminal, G., Clapés, P., & Alvaro, G. (1997). Biocatalysis and Biotransformation, 15, 317–332.Google Scholar
  3. 3.
    van Langen, L., Oosthoek, N., Guranda, D., van Rantwijk, F., Švedas, V., & Sheldon, R. (2000). Tetrahedron: Asymmetry, 11, 4593–4600.CrossRefGoogle Scholar
  4. 4.
    Lindsay, J., Clark, D., & Dordick, J. (2004). Biotechnology and Bioengineering, 85(5), 553–560.CrossRefGoogle Scholar
  5. 5.
    Liu, S., Wei, D., Song, Q., Zhang, Y., & Wang, X. (2006). Bioprocess and Biosystems Engineering, 28, 285–289.CrossRefGoogle Scholar
  6. 6.
    Li, D., Cheng, S., Wei, D., Ren, Y., & Zhang, D. (2007). Biotechnology Letters, 29, 1285–1830.Google Scholar
  7. 7.
    Wegman, M., Janssen, M., van Rantwijk, F., & Sheldon, B. (2001). Advanced Synthesis & Catalysis, 343, 559–576.CrossRefGoogle Scholar
  8. 8.
    Nierstrasz, V., Schroën, C., Bosma, R., Kroon, P., Beeftink, R., Janssen, A., et al. (1999). Biocatalysis and Biotransformation, 17, 209–223.CrossRefGoogle Scholar
  9. 9.
    Schroën, C., Nierstrasz, V., Kroon, P., Bosma, R., Janssen, A., Beeftink, R., et al. (1999). Biocatalysis and Biotransformation, 24, 489–506.Google Scholar
  10. 10.
    Hernández-Jústiz, O., Terreni, M., Pagani, G., García, J., Guisán, J., & Fernández-Lafuente, R. (1999). Enzyme and Microbial Technology, 25, 336–343.CrossRefGoogle Scholar
  11. 11.
    Schroën, C., Nierstrasz, V., Moody, H., Hoogschagen, M., Kroon, P., Bosma, R., et al. (2001). Biotechnology and Bioengineering, 73, 171–178.CrossRefGoogle Scholar
  12. 12.
    Kasche, V. (1986). Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of b-lactam antibiotics, peptides and other condensation products. Enzyme and Microbial Technology, 8, 4–16.CrossRefGoogle Scholar
  13. 13.
    Schroën, C., Nierstrasz, V., Bosma, R., Kroon, P., Tjeersdma, P., de Vroom, E., et al. (2002). Biotechnology and Bioengineering, 80, 144–154.CrossRefGoogle Scholar
  14. 14.
    Illanes, A., & Wilson, L. (2000). Chimica Oggi/ Chemistry Today, 24(5), 27–30.Google Scholar
  15. 15.
    Sheldon, R. A. (2007). Enzyme immobilisation: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 387–394.CrossRefGoogle Scholar
  16. 16.
    Janssen., M. (2006). http://repository.tudelft.nl/file/200584/169747 ISBN:90-9020754-6.
  17. 17.
    Gavrilescu, M., & Chisti, Y. (2005). Biotechnology—a sustainable alternative for chemical industry. Biotechnology Advances, 23, 471–499.CrossRefGoogle Scholar
  18. 18.
    Nam, D., Kim, C., & Ryu, D. (1985). Reaction kinetics of cephalexin synthesizing enzyme from Xanthomonas citri. Biotechnology and Bioengineering, 27, 953–960.CrossRefGoogle Scholar
  19. 19.
    Kheirolomoom, A., Ardjmand, M., Fazelina, H., & Zakeri, A. (2001). Process Biochemistry, 36, 1095–1101.CrossRefGoogle Scholar
  20. 20.
    Youshko, M., Bukhanov, A., & Švedas, V. (2003). Biochemist (Moscow), 68(3), 334–338.CrossRefGoogle Scholar
  21. 21.
    Illanes, A., Rodríguez, F., Bahamondes, C., & Altamirano, C. (2005). Biochemical Engineering Journal, 24, 209–215.CrossRefGoogle Scholar
  22. 22.
    Giordano, R. C., Ribeiro, M., & Giordano, R. L. (2006). Biotechnology Advances, 24, 27–41.CrossRefGoogle Scholar
  23. 23.
    Fernández-Lafuente, R., Rosell, C., Caanan-Haden, L., Rodes, L., & Guisán, J. (1999). Enzyme and Microbial Technology, 24, 96–103.CrossRefGoogle Scholar
  24. 24.
    Terreni, M., Pagani, G., Ubiali, D., Fernandez-Lafuente, R., Mateo, C., & Guisán, J. (2001). Bioorganic & Medicinal Chemistry Letters, 11, 2429–2432.CrossRefGoogle Scholar
  25. 25.
    Basso, A., De Martin, L., Ebert, C., Gardossi, L., Linda, P., & Sibilla, F. (2003). Tetrahedron Letters, 44, 5889–5891.CrossRefGoogle Scholar
  26. 26.
    Bryjak, J., & Trochimczuk, A. (2006). Enzyme and Microbial Technology, 39, 573–578.CrossRefGoogle Scholar
  27. 27.
    Montes, T., Grazú, V., Manso, I., Galán, B., López-Gallego, F., González, R., et al. (2007). Advanced Synthesis & Catalysis, 349, 459–464.CrossRefGoogle Scholar
  28. 28.
    Mateo, C., Palomo, J., van Langen, L., van Rantwijk, F., & Sheldon, R. (2004). Biotechnology and Bioengineering, 86, 273–276.CrossRefGoogle Scholar
  29. 29.
    Roy, J., & Abraham, T. (2004). Chemical Reviews, 104(9), 3705–3721.CrossRefGoogle Scholar
  30. 30.
    Rajendhran, J., & Gunasekaran, P. (2007). Letters in Applied Microbiology, 44, 43–49.CrossRefGoogle Scholar
  31. 31.
    Alvaro, G., Fernández-Lafuente, R., Blanco, R., & Guisán, J. (1990). Applied Biochemistry and Biotechnology, 26, 181–195.CrossRefGoogle Scholar
  32. 32.
    Cao, L., van Langen, L., van Rantwijk, F., & Sheldon, R. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 665–670.CrossRefGoogle Scholar
  33. 33.
    Abian, A., Wilson, L., Mateo, C., Fernández-Lorente, G., Palomo, J., Fernández-Lafuente, R., et al. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19–20, 295–303.CrossRefGoogle Scholar
  34. 34.
    Wilson, L., Illanes, A., Abian, O., Pessela, B., Fernández-Lafuente, R., & Guisán, J. (2004). Biomacromolecules, 5, 852–857.CrossRefGoogle Scholar
  35. 35.
    Estruch, I., Tagliani, A., Guisán, J., Fernández-Lafuente, R., Alcántara, A., Toma, L., et al. (2007). Enzyme and Microbial Technology, 42, 121–129.CrossRefGoogle Scholar
  36. 36.
    Terreni, M., Ubiali, D., Bavaro, T., Pregnolato, M., Fernández-Lafuente, R., & Guisán, J. (2007). Applied Microbiology and Biotechnology, 77, 579–587.CrossRefGoogle Scholar
  37. 37.
    Illanes, A., Cabrera, Z., Wilson, L., & Aguirre, C. (2003). Process Biochemistry, 39(1), 111–117.CrossRefGoogle Scholar
  38. 38.
    Illanes, A., Altamirano, C., Fuentes, M., Zamorano, F., & Aguirre, C. (2005). Journal of Molecular Catalysis. B, Enzymatic, 35(1–3), 45–51.CrossRefGoogle Scholar
  39. 39.
    Illanes, A., Wilson, L., Caballero, E., Fernández-Lafuente, R., & Guisán, J. M. (2006). Journal of Applied Biochemistry and Biotechnology, 133, 189–2002.CrossRefGoogle Scholar
  40. 40.
    Illanes, A., Wilson, L., Altamirano, C., Cabrera, Z., Alvarez, L., & Aguirre, C. (2007). Enzyme and Microbial Technology, 40, 195–203.CrossRefGoogle Scholar
  41. 41.
    Illanes, A., Anjarí, S., Altamirano, C., & Aguirre, C. (2004). Journal of Molecular Catalysis. B, Enzymatic, 30, 95–103.CrossRefGoogle Scholar
  42. 42.
    Arroyo, M., Torres-Guzmán, R., de la Mata, I., Castillón, M., & Acebal, C. (2000). Biotechnology Progress, 16, 368–371.CrossRefGoogle Scholar
  43. 43.
    Illanes, A., & Fajardo, A. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 587–595.CrossRefGoogle Scholar
  44. 44.
    Illanes, A., Anjarí, S., Arrieta, R., & Aguirre, C. (2002). Applied Biochemistry and Biotechnology, 97, 165–179.CrossRefGoogle Scholar
  45. 45.
    Youshko, M., & Švedas, V. (2000). Biochemistry (Moscow), 65, 1367–1375.CrossRefGoogle Scholar
  46. 46.
    Youshko, M., van Langen, L., de Vroom, E., Moody, H., van Rantwijk, F., Sheldon, R., et al. (2000). Penicillin acylase-catalyzed synthesis of ampicillin in “aqueous solution-precipitate” system. High substrate concentration and supersaturation effect. Journal of Molecular Catalysis. B, Enzymatic, 10, 509–515.CrossRefGoogle Scholar
  47. 47.
    Mateo, C., Palomo, J., Fernández-Lorente, G., Guisán, J., & Fernández-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.CrossRefGoogle Scholar
  48. 48.
    Pedroche, J., Yust, M., Mateo, C., Fernández-Lafuente, R., Girón-Calle, J., Alaiz, M., et al. (2007). Enzyme and Microbial Technology, 40, 1160–1166.CrossRefGoogle Scholar
  49. 49.
    Estruch, I., Tagliani, A., Guisán, J., Fernández-Lafuente, R., Alcántara, A., Toma, L., et al. (2008). Enzyme and Microbial Technology, 42, 121–129.CrossRefGoogle Scholar
  50. 50.
    Dalal, S., Kapoor, M., & Gupta, M. (2007). Journal of Molecular Catalysis. B, Enzymatic, 44, 128–132.CrossRefGoogle Scholar
  51. 51.
    Sheldon, R., Sorgedrager, M., & Janssen, M. (2007). Chemistry Today, 25(1), 62–67.Google Scholar
  52. 52.
    Illanes, A., Wilson, L., Corrotea, O., Tavernini, L., Zamorano, F., & Aguirre, C. (2007). Journal of Molecular Catalysis. B, Enzymatic, 47, 72–78.CrossRefGoogle Scholar
  53. 53.
    Illanes, A., & Wilson, L. (2003). Enzyme reactor design under thermal inactivation. Critical Reviews in Biotechnology, 23, 61–93.CrossRefGoogle Scholar
  54. 54.
    Aguirre, C., Toledo, M., Medina, V., & Illanes, A. (2002). Process Biochemistry, 38(3), 351–360.CrossRefGoogle Scholar
  55. 55.
    Baldaro, E. (1991). In U. Pandit (ed.), Chemistry in healthcare and technology. Plenum Press, New York, pp. 237–240.Google Scholar
  56. 56.
    Aguirre, C., Opazo, P., Venegas, M., Riveros, R., & Illanes, A. (2006). Process Biochemistry, 41, 1924–1931.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Andrés Illanes
    • 1
  • Lorena Wilson
    • 1
  • Carolina Aguirre
    • 2
  1. 1.School of Biochemical EngineeringPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Faculty of SciencesUniversidad Católica Ssma. ConcepciónConcepciónChile

Personalised recommendations