Applied Biochemistry and Biotechnology

, Volume 152, Issue 2, pp 199–212

Novel Isolates for Biological Detoxification of Lignocellulosic Hydrolysate

  • Zhang Hou-Rui
  • Qin Xiang-Xiang
  • Silvio S. Silva
  • Boutros F. Sarrouh
  • Cai Ai-Hua
  • Zhou Yu-Heng
  • Jin Ke
  • Xiang Qiu
Article
  • 280 Downloads

Abstract

In this paper, two new strians, Issatchenkia occidentalis (Lj-3, CCTCC M 2006097) and Issatchenkia orienalis (S-7, CCTCC M 2006098), isolated from different environments on solid media, were used in the detoxification process of the hemicellulosic hydrolysate of sugarcane bagasse. High-pressure liquid chromatography elution curve of UV-absorption compounds represented by acetic acid, furfural, and guaiacol (toxic compounds found in the hemicellulosic hydrolysate) showed that several chromatographic peaks were evidently diminished for the case of detoxified hydrolysate with isolate strains compared to the high peaks resulted for no detoxified hydrolysate. It was clear that these inhibitors were degraded by the two new isolates during their cultivation process. Fermentation results for the biodetoxified hydrolysate showed an increase in xylitol productivity (Qp) by 1.97 and 1.95 times (2.03 and 2.01 g l−1 h−1) and in xylitol yield (Yp) by 1.72 and 1.65 times (0.93 and 0.89 g xylitol per gram xylose) for hydrolysate treated with S-7 and Lj-3, respectively, in comparison with no detoxified hydrolysate (1.03 g l−1 h−1 and 0.54 g xylitol per gram xylose). This present work demonstrated the importance of Issatchenkia yeast in providing an effective biological detoxification approach to remove inhibitors and improve hydrolysate fermentability, leading to a high xylitol productivity and yield.

Keywords

Hemicellulosic hydrolysate Toxic compounds Biodetoxification Issatchenkia orientalis (S-7) Issatchenkia occidentalis (Lj-3) Xylitol 

References

  1. 1.
    Sarrouh, B. F., Santos, D. T., & Silva, S. S. (2007). BTJ, 2(6), 759–763.Google Scholar
  2. 2.
    Silva, S. S., Converti, A., Zilli, M., Sene, L., & Felipe, M. G. A. (2001). Applied Biochemistry and Biotechnology, 57, 738–743.Google Scholar
  3. 3.
    Silva, S. S., & Afschar, A. S. (1994). Bioprocess Engineering, 11, 129–34.CrossRefGoogle Scholar
  4. 4.
    Silva, S. S., Santos, J. C., Carvalho, W., Aracava, K. K., & Vitolo, M. (2003). Process Biochemistry, 38(6), 903–907.CrossRefGoogle Scholar
  5. 5.
    Hsu, T. (1996) Handbook on bioethanol production and utilization. In: Wyman CE (Ed) Washington, DC: Taylor and Francis, pp. 179–212Google Scholar
  6. 6.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  7. 7.
    Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1998). Bioresource Technology, 66, 25–40.CrossRefGoogle Scholar
  8. 8.
    Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 25–33.CrossRefGoogle Scholar
  9. 9.
    Berson, R. E., Young, J. S., & Kamer, S. N. (2005). Applied Biochemistry and Biotechnology, 123, 923–934.CrossRefGoogle Scholar
  10. 10.
    Agblevor, F. A., Fu, J., & Hames, B. (2004). Applied Biochemistry and Biotechnology, 119, 97–120.CrossRefGoogle Scholar
  11. 11.
    Carvalhero, F., Duarte, L. C., & Lopes, S. (2005). Process Biochemistry, 40, 1215–1223.CrossRefGoogle Scholar
  12. 12.
    Mussatto, S. I., & Roberto, I. C. (2004). Bioresource Technology, 93, 1–10.CrossRefGoogle Scholar
  13. 13.
    Carvalho, G. B. M., Mussatto, S. I., & Cândido, E. J. (2006). Journal of Chemical Technology and Biotechnology, 81, 152–157.CrossRefGoogle Scholar
  14. 14.
    López, M. J., Nichols, N. N., Deien, B. B., Moreno, J., & Bothast, R. J. (2004). Applied Microbiology and Biotechnology, 64, 125–131.CrossRefGoogle Scholar
  15. 15.
    Peterson, S. W., & Kurtzman, C. P. (1991). Systematic and Applied Microbiology, 14, 124–129.Google Scholar
  16. 16.
    Raeder, U., & Broda, P. (1985). Applied Microbiology, 1, 17–20.CrossRefGoogle Scholar
  17. 17.
    Guadet, J., Julien, J., Lafey, J. F., & Brygoo, Y. (1989). Molecular Biology and Evolution, 6, 227–242.Google Scholar
  18. 18.
    Kurtzman, C. P., & Robnett, C. J. (1997). Journal of Clinical Microbiology, 35, 1216–1223.Google Scholar
  19. 19.
    Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.CrossRefGoogle Scholar
  20. 20.
    Barnett, J. A., Payne, R. W., Yarrow, D. (1990) Yeasts: characteristics and identification. (pp. 683–684) Cambridge: Cambridge University Press.Google Scholar
  21. 21.
    Luo, C., Brink, D. L., & Blanch, H. W. (2002). Biomass Bioenergy, 22, 125–130.CrossRefGoogle Scholar
  22. 22.
    Jönsson, L. J., Palmqvist, E., Nilvebrant, N. O., & Hahn-Hägerdal, B. (1998). Applied Microbiology and Biotechnology, 49, 691–697.CrossRefGoogle Scholar
  23. 23.
    Rodrigues, R. C. L. B., Felipe, M. G. A., Almeida e Silva, J. B., Vitolo, M., & Gómez, P. V. (2001). Brazilian Journal of Chemical Engineering, 18(3), 299–311.CrossRefGoogle Scholar
  24. 24.
    Silva, C. J. S. M., & Roberto, I. C. (2001). Letters in Applied Microbiology, 32, 248–252.CrossRefGoogle Scholar
  25. 25.
    Nichols, N. N., Dien, B. S., & Guisado, G. M. (2005). Applied Biochemistry and Biotechnology, 124, 379–390.CrossRefGoogle Scholar
  26. 26.
    Patrícia, A., Ramalho, M., & Helena, C. (2004). Applied and Environmental Microbiology, 70(4), 2279–2288.CrossRefGoogle Scholar
  27. 27.
    Tamaki, H., Kumagai, H., & Shimada, Y. (1991). Agricultural and Biological Chemistry, 55(4), 951–956.Google Scholar
  28. 28.
    Arroyo, L. F. N., Duran, Q. M. C., & Garrido, F. A. (2006). Journal of Food Protection, 69(6), 1354–1364.Google Scholar
  29. 29.
    Lee, J. H., Lim, Y. B., & Park, K. M. (2003). Asian–Australasian Journal of Animal Sciences, 16(7), 1011–1014.Google Scholar
  30. 30.
    Middelhoven, W. J. (2001) Methods in biotechnology. In: Spencer, J. F. T., Spencer, R. (Eds.) Food microbiology protocols (pp. 209–224). New York: Humana.Google Scholar
  31. 31.
    Costas, M, Deive, F. J., & Longo, M. A. (2004). Process Biochemistry, 39, 2109–2114.CrossRefGoogle Scholar
  32. 32.
    Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Biotechnology Progress, 17, 287–293.CrossRefGoogle Scholar
  33. 33.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25(17), 3389–3402.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Zhang Hou-Rui
    • 1
  • Qin Xiang-Xiang
    • 1
  • Silvio S. Silva
    • 2
  • Boutros F. Sarrouh
    • 2
  • Cai Ai-Hua
    • 1
  • Zhou Yu-Heng
    • 1
  • Jin Ke
    • 1
  • Xiang Qiu
    • 3
  1. 1.Phytochemical Department, Guangxi Institute of BotanyThe Chinese Academy of SciencesYanshan, Guilin CityPeople’s Republic of China
  2. 2.Biotechnology DepartmentEngineering School of Lorena-São Paulo UniversityLorenaBrazil
  3. 3.Biotechnology DepartmentGui Lin Medical CollegeGuilin CityPeople’s Republic of China

Personalised recommendations