Advertisement

Applied Biochemistry and Biotechnology

, Volume 151, Issue 2–3, pp 587–598 | Cite as

Mediator-assisted Decolorization and Detoxification of Textile Dyes/Dye Mixture by Cyathus bulleri Laccase

  • Meenu Chhabra
  • Saroj Mishra
  • T. R. Sreekrishnan
Article

Abstract

Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80–95% decolorization at rates that varied from 226 ± 4 nmol min−1 mg−1 for Reactive Orange 1 to 1,333 ± 15 nmol min−1 mg−1 for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase–ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase–mediator system appears promising for treatment of textile wastewaters.

Keywords

Cyathus bulleri Dye decolorization Mediator-assisted decolorization Laccase Detoxification 

Notes

Acknowledgments

The financial support of Department of Biotechnology (Government of India) to investigators (SM, TRS) is gratefully acknowledged. Support to MC as a CSIR-JRF fellow is also acknowledged.

References

  1. 1.
    Zollinger, H. (1987). Colour chemistry—Synthesis, properties and applications of organic dyes and pigments (pp. 92–100). New York: VCH.Google Scholar
  2. 2.
    Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Bioresource Technology, 77, 247–255.CrossRefGoogle Scholar
  3. 3.
    Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. J. (2003). Journal of Biotechnology, 101, 57–68.CrossRefGoogle Scholar
  4. 4.
    Benigni, R., Giuliani, A., Franke, R., & Gruska, A. (2000). Chemical Reviews, 100, 3697–3714.CrossRefGoogle Scholar
  5. 5.
    Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). Biotechnology Advances, 22, 161–187.CrossRefGoogle Scholar
  6. 6.
    Chivukula, M., & Renganathan, V. (1995). Applied and Environmental Microbiology, 61, 4374–4377.Google Scholar
  7. 7.
    Bourbonnias, R., Paice, H. G., Freiermuth, B., Bodie, E., & Bormeman, S. (1997). Applied and Environmental Microbiology, 63, 4627–4632.Google Scholar
  8. 8.
    Camarero, S., Ibarra, D., Martinez, M. J., & Martinez, A. T. (2005). Applied and Environmental Microbiology, 71, 1775–1784.CrossRefGoogle Scholar
  9. 9.
    Salony, Mishra, S., & Bisaria, V. S. (2006a). Applied Microbiology and Biotechnology, 71, 646–653.CrossRefGoogle Scholar
  10. 10.
    Salony, Mishra, S., & Bisaria, V. S. (2007). Journal of Scientific & Industrial Research, 66, 684–688.Google Scholar
  11. 11.
    Eggert, C., Temp, U., & Ericksson, K. L. (1996). Applied and Environmental Microbiology, 62, 1151–1158.Google Scholar
  12. 12.
    Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Paulo, A. C., & Gubitz, G. M. (2000). Applied and Environmental Microbiology, 66, 3357–3362.CrossRefGoogle Scholar
  13. 13.
    Mortelmans, K., & Zeiger, E. (2000). Mutation Research, 455, 29–60.Google Scholar
  14. 14.
    Baiocco, P., Barreca, A. M., Fabbrini, M., Galli, C., & Gentili, P. (2003). Org Biomol Chem, 1, 191–197.CrossRefGoogle Scholar
  15. 15.
    Li, K. C., Helm, R. F., & Eriksson, K. E. L. (1998). Biotechnology and Applied Biochemistry, 27, 239–243.Google Scholar
  16. 16.
    O’Neill, C., Hawkes, F. R., Hawkes, D. L., Lourenco, N. D., Pinheiro, H. M., & Delee, W. (1999). Journal of Chemical Technology and Biotechnology, 74, 1009–1018.CrossRefGoogle Scholar
  17. 17.
    Manu, B., & Chaudhari, S. (2002). Bioresource Technology, 82, 225–223.CrossRefGoogle Scholar
  18. 18.
    Senan, R. C., & Abraham, T. E. (2004). Biodegradation, 15, 275–280.CrossRefGoogle Scholar
  19. 19.
    Srikanlayanukul, M., Khanongnuch, C., & Lumyong, S. (2006). Central Mindanao University Journal, 5, 301–306.Google Scholar
  20. 20.
    Claus, H., Faber, G., & König, H. (2002). Applied Microbiology and Biotechnology, 59, 672–678.CrossRefGoogle Scholar
  21. 21.
    Mohorcic, M., Teodorovic, S., Golob, V., & Friedrich, J. (2006). Chemosphere, 63, 1709–1717.CrossRefGoogle Scholar
  22. 22.
    d’Acunzo, F., & Galli, C. (2003). European Journal of Biochemistry, 270, 3634–3640.CrossRefGoogle Scholar
  23. 23.
    Clarke, E. A., & Anliker, R. (1984). Review of Progress in Coloration, 14, 84–89.Google Scholar
  24. 24.
    Novotny, C., Dias, N., Kapanen, A., Malachova, K., Vándrovcova, M., Itavaara, M., et al. (2006). Chemosphere, 63, 1436–1442.CrossRefGoogle Scholar
  25. 25.
    Salony, Garg, N., Baranwal, R., Chhabra, M., Mishra, S., Chaudhuri, T. K., & Bisaria, V. S. (2008). Biochimica et Biophysica Acta—Protein and Proteonomics, 1784, 259–268.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Meenu Chhabra
    • 1
  • Saroj Mishra
    • 1
  • T. R. Sreekrishnan
    • 1
  1. 1.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations