Applied Biochemistry and Biotechnology

, Volume 151, Issue 2–3, pp 489–501 | Cite as

Effect of α-Ketoglutarate on Monoclonal Antibody Production of Hybridoma Cell Lines in Serum-Free and Serum-Containing Medium

  • Suthasinee Nilsang
  • Ashok Kumar
  • Sudip Kumar Rakshit


Process development and optimization for increase population growth and protein productivity in mammalian cell culture have been studied for many years. In this study, the behavior of hybridoma cells was investigated using six-well micro-titer plate systems with a working volume of 4 ml. Mouse hybridoma cell lines D2 and 2C83G2 were seeded in serum-free and serum-containing media and cultured for 8 days. α-Ketoglutarate is an integral component of the tricarboxylic acid (TCA) cycle and is produced from glutamine via glutamate. To study its effect on cell growth, metabolism, and monoclonal antibody (mAb) production, 2 mM α-ketoglutarate (pH 7.2) was added in both media at the beginning of the cultivation and in another set after 72 h. High cell density was observed in D2 cell culturing in serum-free medium, while 2C83G2 cell line showed high cell density in serum-containing medium. However, both cell lines cultured in serum-free medium gave viability above 70% when grown for 8 days. The supplement of 2 mM α-ketoglutarate supported cell growth and mAb production of both hybridoma cell lines in serum-free and serum-containing medium. The addition of α-ketoglutarate at the beginning of the batch cultivation gave better result in cell growth and mAb production as compared to α-ketoglutarate supplementation after 72 h. However, addition after 72 h was better than no addition at all. This indicates that α-ketoglutarate have a positive effect on production and release of antibody.


Antibody production α-Ketoglutarate Serum-free medium Hybridoma 



We would like to thank Dr. Oraprapai Gajanadana and Ms. Orawan Himananto (Monoclonal antibody production laboratory, BIOTEC, NSTDA Thailand) for their assistance in conducting the experiments.


  1. 1.
    Arden, N., & Betenbaugh, M. J. (2006). Cytotechnology, 50, 77–92.CrossRefGoogle Scholar
  2. 2.
    Sommerfeld, S., & Stube, J. (2005). Chemical Engineering and Processing, 44, 1123–1137.CrossRefGoogle Scholar
  3. 3.
    Glaser, V. (2001). Genetic Engineering News, 21, June.Google Scholar
  4. 4.
    Gorfien, S., Paul, B., Walowitz, J., Keem, R., Biddle, W., & Jayme, D. (2000). Biotechnology Progress, 16, 682–687.CrossRefGoogle Scholar
  5. 5.
    Even, M. E., Sandusky, C. B., & Barnard, N. D. (2000). Trends in Biotechnology, 24, 105–108.CrossRefGoogle Scholar
  6. 6.
    Ozturk, S. S., & Palsson, B. O. (1991). Biotechnology Progress, 7, 481–494.CrossRefGoogle Scholar
  7. 7.
    LeFloch, F., Tessier, B., Chenuet, S., Guillaume, J. M., Cans, P., & Goergen, J. L. (2006). Cytotechnology, 52, 39–53.CrossRefGoogle Scholar
  8. 8.
    Bulter, M. (2005). Applied Microbiology and Biotechnology, 68, 283–291.CrossRefGoogle Scholar
  9. 9.
    Gambhir, A., Korke, R., Jongchan, L., Peng-Cheng, F., Europa, A., & Wie-Shou, H. (2003). Journal of Bioscience and Bioengineering, 95, 317–327.Google Scholar
  10. 10.
    Tapiero, H., Mathé, G., Couvreur, P., & Tew, K. D. (2002). Biomedicine & Pharmacotherapy, 56, 446–457.CrossRefGoogle Scholar
  11. 11.
    Aussel, C., Coudray-Lucus, C., Lasnier, E., Cynober, L., & Ekindjian, O. G. (1996). Cell Biology International, 20, 359–363.CrossRefGoogle Scholar
  12. 12.
    Genzel, Y., Ritter, J. B., Konig, S., Rudiger, A., & Reichl, U. (2005). Biotechnology Progress, 21, 58–69.CrossRefGoogle Scholar
  13. 13.
    Hassel, T. J., & Butler, M. (1990). Journal of Cell Science, 96, 501–508.Google Scholar
  14. 14.
    McDermott, R. H., & Butler, M. (1993). Journal of Cell Science, 104, 51–58.Google Scholar
  15. 15.
    Franĕk, F., Eckschlager, T., & Katinger, H. (2003). Biotechnology Progress, 19, 169–174.CrossRefGoogle Scholar
  16. 16.
    Girard, P., Jordan, M., Taso, M., & Wurm, F. M. (2001). Biochemical Engineering Journal, 7, 117–119.CrossRefGoogle Scholar
  17. 17.
    Rao, M. S. (2000). Dissertation, Asian Institute of Technology, Bangkok.Google Scholar
  18. 18.
    Bergmeyer, H. U., & Beutler, H. O. (1985). In Bergmeyer H. U (Ed.) Method of enzymatic analysis (pp. 454–461). New York: Academic.Google Scholar
  19. 19.
    Lee, G. M., Kim, N. S., Yoon, S. K., Ahn, Y. H., & Song, J. Y. (1999). Journal of Biotechnology, 69, 85–93.CrossRefGoogle Scholar
  20. 20.
    Ozturk, S. S., Kaseka, G., Mahaworasilpa, T., & Coster, H. G. (2003). Hybrid Hybridomics, 22, 267–272.CrossRefGoogle Scholar
  21. 21.
    Quesney, S., Marvel, J., Marc, A., Gerdil, C., & Meignier, B. (2001). Cytotechnology, 35, 115–125.CrossRefGoogle Scholar
  22. 22.
    Neermann, J., & Wagner, R. (1996). Journal of Cellular Physiology, 166, 152–169.CrossRefGoogle Scholar
  23. 23.
    Schneider, M., Marison, I. W., & von Stockar, U. (1996). Journal of Biotechnology, 46, 161–185.CrossRefGoogle Scholar
  24. 24.
    Cornn, E. E., & Stumpf, P. M. (Eds) (1976). Book outline of biochemistry. USA: Wiley.Google Scholar
  25. 25.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (1983). Molecular biology of the cell. New York: Garland Publishing.Google Scholar
  26. 26.
    Pörtner, R., & Schafer, T. (1996). Journal of Biotechnology, 49, 119–135.CrossRefGoogle Scholar
  27. 27.
    Bames, D., & Sato, G. (1980). Cell, 22, 649–655.CrossRefGoogle Scholar
  28. 28.
    Keen, M. J., & Hale, C. (1996). Cytotechnology, 17, 153–163.CrossRefGoogle Scholar
  29. 29.
    Jayme, D., Watanabe, T., & Shimada, T. (1997). Cytotechnology, 23, 95–101.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Suthasinee Nilsang
    • 1
    • 2
  • Ashok Kumar
    • 3
  • Sudip Kumar Rakshit
    • 1
    • 4
  1. 1.Department of Food Engineering and Bioprocess Technology, School of Environment, Resources and DevelopmentAsian Institute of TechnologyPathumthaniThailand
  2. 2.Faculty of Science and TechnologyValaya Alongkorn Rajabhat UniversityPathumthaniThailand
  3. 3.Department of Biological Sciences and BioengineeringIndian Institute of Technology KanpurKanpurIndia
  4. 4.Department of Food Engineering and Bioprocess TechnologyAsian Institute of TechnologyPathumthaniThailand

Personalised recommendations