Applied Biochemistry and Biotechnology

, Volume 151, Issue 2–3, pp 452–463 | Cite as

Biomolecules and Nutritional Quality of Soymilk Fermented with Probiotic Yeast and Bacteria

Article

Abstract

Soymilk was fermented with five isolates of probiotic lactic acid bacteria and in combination with probiotic yeast Saccharomyces boulardii. Nutritional profile like fat, protein, ash, pH, acidity, polyphenol, and protein hydrolysis were analyzed. Polyphenol content decreased from 265.88 to 119 μg/ml with different cultures. Protein hydrolysis ranged from 2.46 to 2.83 mmol l−1 with different cultures. The antioxidant activity was assessed using different methods like 1, 1-diphenyl-2-picrylhydrazyl free radical-scavenging assay, inhibition of ascorbate autoxidation, and measurement of reducing activity. The activities varied with the starters used but, nevertheless, were significantly higher than those found in unfermented soymilk. Bioconversion of the isoflavone glucosides (daidzin + genistin) into their corresponding bioactive aglycones (daidzein + genistein) was observed during soymilk fermentation. Total glucosides in soyamilk were 26.35 mg/100 ml. In contrast, aglycones genistein and daidzein were quantitatively lesser accounting 2.91 mg/100 ml (genistein 1.17 mg/100 ml and daidzein 1.19 mg/100 ml). Soymilk fermented with probiotic cultures resulted in the reduction of glycosides ranging from 0.40 mg to 1.36 mg/100 ml and increase in aglycones ranging from 6.32 mg to 13.66 mg/100 ml.

Keywords

Antioxidant activity Biomolecule Isoflavones Polyphenol Probiotic S. boulardii 

Abbreviations

LAB

lactic acid bacteria

Sb

Saccharomyces boulardii

La

Lactobacillus acidophilus

Lb

Lactobacillus bulgaricus

Lc

Lactobacillus casei

Lp

Lactobacillus plantarum

Lh

Lactobacillus helviticus

References

  1. 1.
    Dhananjay, S., Kulkarni, S. S., Kapanoor, K. G., Naganagouda, V. K., & Veerappa, H. M. (2006). Biotechnology and Applied Biochemistry, 45, 51–57.CrossRefGoogle Scholar
  2. 2.
    Adlercreutz, H. (2002). Lancer Oncology, 3, 364–373.CrossRefGoogle Scholar
  3. 3.
    Brouns, F. (2002). Food Research International, 35, 187–193.CrossRefGoogle Scholar
  4. 4.
    Corn well, T., Cohick, W., & Raskin, I. (2004). Phytochemistry, 65, 995–1016.CrossRefGoogle Scholar
  5. 5.
    Khare, S. K., Krishna, J., & Manishwara, M. N. (1994). Biotechnology and Applied Biochemistry, 19, 193–198.Google Scholar
  6. 6.
    Beck, V., Unterrieder, E., Krenn, L., Kubelka, W., & Jungbauer, A. (2003). Journal of Steroid Biochemistry and Molecular Biology, 84, 259–268.CrossRefGoogle Scholar
  7. 7.
    Setchell, K. D. R. (1998). American Journal of Clinical Nutrition, 68(suppl), 1333S–1346S.Google Scholar
  8. 8.
    Setchell, K. D. R., & Cassidy, A. (1999). Journal of Nutrition, 129(suppl), 758S–767S.Google Scholar
  9. 9.
    Fukutake, M., Takahashi, M., Ishida, K., Kawamaru, H., Sugimura, T., & Wakabayashi, K. (1996). Food&chemical Toxicology, 34, 457–461.CrossRefGoogle Scholar
  10. 10.
    Arjmandi, B. H., Birnbaum, R., Goyal, N. V., Getlinger, M. J., Juma, S., & Alekel, L. (1998). American Journal of Clinical Nutrition, 68, 1364S–1368S.Google Scholar
  11. 11.
    Potter, S. M., Baum, J. A., Teng, H., Stillman, R. J., Shay, N. F., & Erdman, J. R. (1998). American Journal of Clinical Nutrition, 68, 1375S–1379S.Google Scholar
  12. 12.
    Wagner, J. D., Cefalu, W. T., Anthony, M. S., Litwak, K. N., Zhang, L., & Clarkson, T. B. (1997). Metabolism, 46, 698–705.CrossRefGoogle Scholar
  13. 13.
    King, R. A., & Bignell, C. M. (2000). Aus Journal of Nutrition and Dietetics, 57(2), 70–78.Google Scholar
  14. 14.
    Chang, Y. C., & Nair, M. G. (1995). Journal of Natural Products, 58, 1892–1896.CrossRefGoogle Scholar
  15. 15.
    Xu, X., Harris, K. S., Wang, H., Murphy, P. A., & Hendrich, S. (1995). Journal of Nutrition, 125, 2307–2315.Google Scholar
  16. 16.
    Fleet, G. H., & Mian, M. A. (1987). International Journal of Food Microbiology, 4, 145–155.CrossRefGoogle Scholar
  17. 17.
    AOAC. (1970). Official methods of analysis (11th ed.). Washington, DC: Association of Official Analytical Chemists.Google Scholar
  18. 18.
    AOAC. (1984). Official methods of analyis (14th ed.). Washington, DC: Association of Official Analytical Chemists.Google Scholar
  19. 19.
    Singleton, V. L., & Rossi, J. A. (1965). American Journal of Enology and Viticulture, 16, 144–158.Google Scholar
  20. 20.
    Adler-Nissen, J. (1979). Journal of Agricultural and Food Chemistry, 27, 1256–1262.CrossRefGoogle Scholar
  21. 21.
    Moon, J. H., & Terao, J. (1998). Journal of Agricultural and Food Chemistry, 46, 5062–5065.CrossRefGoogle Scholar
  22. 22.
    Mishra, O. P., & Kovachich, G. B. (1984). Life Sciences, 35, 849–854.CrossRefGoogle Scholar
  23. 23.
    Oyaizu, M. (1986). Japanese Journal of Nutrition, 44, 307–315.Google Scholar
  24. 24.
    Chiou, R. Y. Y., & Cheng, S. L. (2001). Journal of Agricultural and Food Chemistry, 49, 3656–3660.CrossRefGoogle Scholar
  25. 25.
    Hou, J-W., Yu, R-C., & Chou, C-C. (2000). Food Research International, 33, 393–397.CrossRefGoogle Scholar
  26. 26.
    Ankenman Granata, L., & Morr, C. V. (1996). Journal of Food Science, 61(2), 331–336.CrossRefGoogle Scholar
  27. 27.
    Chou, C-C., & Hou, J-W. (2000). International Journal of Food Microbiology, 56, 113–121.CrossRefGoogle Scholar
  28. 28.
    Karleskind, D., Laye, I., Halpin, E., & Morr, C. V. (1991). Journal of Food Science, 55, 999–1001.CrossRefGoogle Scholar
  29. 29.
    Oberman, H. (1985). CH3. London, England: Applied Science Publishers.Google Scholar
  30. 30.
    Sindhu, S. C., & Khetarpaul, . (2003). Plants Foods for Human Nutrition, 58, 1–10.CrossRefGoogle Scholar
  31. 31.
    Serraino, M. R., Thompton, L. U., Savoie, L., & Parent, G. (1985). Journal of Food Science, 50, 1689–1692.CrossRefGoogle Scholar
  32. 32.
    Kurmann, J. A., & Rasic, J. L. (1991). Therapeutic properties of fermented milks pp. 117–158. London: Elsevier Applied Sciences.Google Scholar
  33. 33.
    Pyo, Y-H., Lee, T-C., & Lee, Y-C. (2005). Food Research International, 38, 551–559.CrossRefGoogle Scholar
  34. 34.
    Wang, Y-C., Yu, R-C., & Chou, C-C. (2006). Food Microbiology, 23, 128–135.CrossRefGoogle Scholar
  35. 35.
    Chien, H. L. (2004). M.S.Thesis, National Taiwan University, Taipei, Taiwan.Google Scholar
  36. 36.
    Yang, J. H., Mau, J. L., Ko, P. T., & Huang, L. C. (2000). Antioxidant properties of fermented soybean broth. Food Chemistry, 71, 249–254.CrossRefGoogle Scholar
  37. 37.
    Tsangalis, D., Ashton, J. E., Magill, A. E. J., & Shah, N. P. (2002). Journal of Food Science, 68, 623–631.CrossRefGoogle Scholar
  38. 38.
    Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Journal of Agricultural and Food Chemistry, 40, 945–948.CrossRefGoogle Scholar
  39. 39.
    Izumi, T., Nasu, A., Kataoka, S., Obata, A., & Tobe, K. (2000). Chem Pharma, 1593–1595.Google Scholar
  40. 40.
    Pyo, Y-H., Lee, T-C., & Lee, Y-C. (2005). Journal of Food Science, 70, S215–S220.Google Scholar
  41. 41.
    Laurens-Hatting, A., & Viljoen, B. C. (2001). Food Research International, 34, 791–796.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Department of Food MicrobiologyCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations