Applied Biochemistry and Biotechnology

, Volume 152, Issue 1, pp 29–41

Deactivation Kinetics and Response Surface Analysis of the Stability of α-l-Rhamnosidase from Penicillium decumbens

Article

Abstract

The stability of the mixed enzyme preparation Naringinase from Penicillium decumbens was studied in dependence of the temperature, the pH value, and the enzyme concentration by means of response surface methodology. Deactivation kinetics by formation of an intermediate state was proposed for fitting deactivation data. Empirical models could then be constructed for prediction of deactivation rate constants, specific activity of intermediate state, and half-life values under different incubation conditions. From this study, it can be concluded that (1) Naringinase is most stable in the pH range of 4.5–5.0, being quite sensitive to lower pHs (<3.5) and (2) the glyco-enzyme is a rather thermo-stable enzyme preserving its initial activity for long times when incubated at its optimal pH up to temperatures of 65 °C. Enriched α-l-rhamnosidase after column treatment and ultrafiltration presented similar deactivation kinetics pattern and half-life values as the unpurified enzyme. Thus, any influence of low molecular weight substances on its deactivation is most probably negligible. The intermediate state of the enzyme may correspond to unfolding and self-digestion of its carbohydrate portion, lowering its activity relative to the initial state. The digestion- and unfolding-grade of this intermediate state may also be controlled by the pH and temperature of incubation.

Keywords

Naringinase Doehlert array Response surface methodology Series-type deactivation kinetics α-Rhamnosidase Enzyme stability 

References

  1. 1.
    Dunlap, W. J., Hagen, R. E., & Wender, S. H. (1962). Journal of Food Science, 27(6), 597.Google Scholar
  2. 2.
    Puri, M., & Banerjee, U. C. (2000). Biotechnology Advances, 18(3), 207–217.CrossRefGoogle Scholar
  3. 3.
    Romero, C., et al. (1985). Analytical Biochemistry, 149(2), 566–571.CrossRefGoogle Scholar
  4. 4.
    Young, N. M., Johnston, R. A. Z., & Richards, J. C. (1989). Carbohydrate Research, 191(1), 53–62.CrossRefGoogle Scholar
  5. 5.
    Ellenrieder, G., & Daz, M. (1996). Biocatalysis and Biotransformation, 14(2), 113–123.CrossRefGoogle Scholar
  6. 6.
    Mutter, M., et al. (1994). Plant Physiology, 106(1), 241–250.CrossRefGoogle Scholar
  7. 7.
    Manzanares, P., et al. (2001). Applied and Environmental Microbiology, 67(5), 2230–2234.CrossRefGoogle Scholar
  8. 8.
    Gallego, M. V., et al. (2001). Journal of Food Science, 66(2), 204–209.CrossRefGoogle Scholar
  9. 9.
    Soria, F., & Ellenrieder, G. (2002). Bioscience Biotechnology and Biochemistry, 66(7), 1442–1449.CrossRefGoogle Scholar
  10. 10.
    Meiwess, J., Wullbrant, D., & Giani, C. (1994) EP0599159.Google Scholar
  11. 11.
    Trummler, K., Effenberger, F., & Syldatk, C. (2003). European Journal of Lipid Science and Technology, 105(10), 563–571.CrossRefGoogle Scholar
  12. 12.
    Mamma, D., et al. (2004). Food Biotechnology, 18(1), 1–18.CrossRefGoogle Scholar
  13. 13.
    Manzanares, P., de Graaff, L. H., & Visser, J. (1997). FEMS Microbiology Letters, 157(2), 279–283.Google Scholar
  14. 14.
    Manzanares, P., et al. (2000). Letters in Applied Microbiology, 31(3), 198–202.CrossRefGoogle Scholar
  15. 15.
    Monti, D., et al. (2004). Biotechnology and Bioengineering, 87(6), 763–771.CrossRefGoogle Scholar
  16. 16.
    Scaroni, E., et al. (2002). Letters in Applied Microbiology, 34(6), 461–465.CrossRefGoogle Scholar
  17. 17.
    Gabor, F., & Pittner, F. (1984). Hoppe-Seylers Zeitschrift Fur Physiologische Chemie, 365(9), 914–914.Google Scholar
  18. 18.
    Turecek, P., & Pittner, F. (1986). Applied Biochemistry and Biotechnology, 13(1), 1–13.CrossRefGoogle Scholar
  19. 19.
    Tsen, H. Y., Tsai, S. Y., & Yu, G. K. (1989). Journal of Fermentation and Bioengineering, 67(3), 186–189.CrossRefGoogle Scholar
  20. 20.
    Puri, M., Marwaha, S. S., & Kothari, R. M. (1996). Enzyme and Microbial Technology, 18(4), 281–285.CrossRefGoogle Scholar
  21. 21.
    Norouzian, D., et al. (1999). World Journal of Microbiology & Biotechnology, 15(4), 501–502.CrossRefGoogle Scholar
  22. 22.
    Biselli, M., Krugl, U., & Wandrey, C. (1995). In K. Drauz, & H. Waldman (Eds.), Enzyme catalysis in organic synthesis—a comprehensive handbook, Vol. 1 (pp. 89–155). Weinheim: VCH.Google Scholar
  23. 23.
    Klibanov, A. M. (1983). Advances in Applied Microbiology, 29, 1–28.CrossRefGoogle Scholar
  24. 24.
    Bisswanger, H. (1999). Enzymkinetik: Theorie und methoden (3rd ed.). Weinheim: Wiley-VCH.Google Scholar
  25. 25.
    Sadana, A. (1991). Biocatalysis: Fundamentals of enzyme deactivation kinetics. New Jersey: Prentice Hall.Google Scholar
  26. 26.
    Bradford, M. M. (1976). Analytical Biochemistry, 72(1–2), 248–254.CrossRefGoogle Scholar
  27. 27.
    Aktinson, C. (1992). Optimum experimental designs. Oxford: Clarendon.Google Scholar
  28. 28.
    Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistic for experimenters: An introduction to design, data analysis and model building. New York: Wiley.Google Scholar
  29. 29.
    Khuri, A. I., & Cornell, J. A. (1987). Response surfaces, design and analyses. New York: Marcel Dekker.Google Scholar
  30. 30.
    Rasch, D., Verdooren, L. R., & Gowers, J. I. (1999). Grundlagen der Planung und Auswertung von Versuchen und Erhebungen, R. Oldenbourg Verlag, München, WienGoogle Scholar
  31. 31.
    BenoitMarquie, F., et al. (1997). Journal of Photochemistry and Photobiology A—Chemistry, 108(1), 65–71.CrossRefGoogle Scholar
  32. 32.
    Oliveros, E., et al. (2000). In Proceedings of the third Asia pacific conference (pp. 577–581). Singapore, Work Scientific.Google Scholar
  33. 33.
    Oliveros, E., et al. (1997). Chemical Engineering and Processing, 36(5), 397–405.CrossRefGoogle Scholar
  34. 34.
    NEMRODW LPRAI, B.P. no. 7, Marseille - Le Merlan, 13311 Marseille Cedex 14, France. Retrieved from www.nemrodw.com.
  35. 35.
    Scopes, R. (1994). Protein purification, principles and practice (3rd ed.). New York: Springer.Google Scholar
  36. 36.
    Mozhaev, V. V. (1993). Trends in Biotechnology, 11(3), 88–95.CrossRefGoogle Scholar
  37. 37.
    Greco, G., et al. (1992). In Stability and stabilization of enzymes (Proceedings of an International Symposium) (pp. 429–435). Maastricht: Elsevier Science.Google Scholar
  38. 38.
    Prazeres, D. M. F., Garcia, F. A. P., & Cabral, J.M. S. (1992). In Stability and stabilization of enzymes (Proceedings of an International Symposium) (pp. 445–450). Maastricht: Elsevier Science.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • I. Magario
    • 1
  • A. Neumann
    • 1
  • E. Oliveros
    • 2
    • 3
  • C. Syldatk
    • 1
  1. 1.Institute of Engineering in Life Sciences, Chair of Technical BiologyUniversity of Karlsruhe (TH)KarlsruheGermany
  2. 2.Lehrstuhl für Umweltmesstechnik, Engler-Bunte-InstitutUniversität KarlsruheKarlsruheGermany
  3. 3.Laboratoire des IMRCP, UMR CNRS 5623Université Paul SabatierToulouse cédex 9France

Personalised recommendations