Advertisement

Applied Biochemistry and Biotechnology

, Volume 151, Issue 1, pp 9–19 | Cite as

Strategies for Enhancing Laccase Yield from Streptomyces psammoticus and Its Role in Mediator-based Decolorization of Azo Dyes

  • K. N. Niladevi
  • P. S. Sheejadevi
  • P. PremaEmail author
Article

Abstract

Enhanced production of laccases from Streptomyces psammoticus in solid-state fermentation was carried out using two different strategies: laccase inducers and scale-up process. Laccase yield was enhanced by a wide range of aromatic inducers. The best inducer was pyrogallol, which yielded 116 U/g as compared to the control (55.4 U/g). Scale-up studies in packed bed bioreactor was performed at different aeration rates. Aeration at 1.5 vvm was identified as the optimum condition for laccase production (75.4 U/g) in the column bioreactor. The enzyme yield was enhanced further by combining the best conditions from the first two experiments. Fermentation was carried out in bioreactors in the presence of 1 mM pyrogallol, which resulted in 3.9-fold increase in laccase yield (215.6 U/g). The role of laccase in azo dye decolorization was evaluated in the presence of four different laccase mediators, at different concentrations. 1-Hydroxybenzotriazole (HOBT) proved to be the best mediator for S. psammoticus laccase and decolorized the azo dyes efficiently. Acid orange, Methyl orange, and Bismarck brown were decolorized at the rates of 86%, 71%, and 75% respectively, by HOBT.

Keywords

Laccase Aromatic inducers Packed bed reactor Laccase-mediators Dye decolorization Streptomyces psammoticus 

Notes

Acknowledgments

The authors are grateful to the Council of Scientific and Industrial Research, Government of India, for the Research Fellowship given to K.N. Niladevi.

References

  1. 1.
    Piontek, K., Antorini, M., & Choinowski, T. (2002). Journal of Biological Chemistry, 277, 37663–37669.CrossRefGoogle Scholar
  2. 2.
    Arias, M. E., Arenas, M., Rodriguez, J., Soliveri, J., Ball, A. S., & Hernandez, M. (2003). Applied and Environmental Microbiology, 69, 1953–1958.CrossRefGoogle Scholar
  3. 3.
    Minussi, R. C., Pastore, G. M., & Durany, N. (2002). Trends in Food Science and Technology, 13, 205–216.CrossRefGoogle Scholar
  4. 4.
    Abadulla, E., Tzanov, T., Costa, S., Robra, K., Cavaco-Paulo, A., & Guebitz, G. M. (2000). Applied and Environmental Microbiology, 66, 3357–3362.CrossRefGoogle Scholar
  5. 5.
    Mayer, A. M., & Staples, R. C. (2002). Phytochemistry, 60, 551–565.CrossRefGoogle Scholar
  6. 6.
    Soares, G. M. B., Amorim, M. T. P., Hrdina, R., & Costa-Ferreira, M. (2002). Process Biochemistry, 37, 581–587.CrossRefGoogle Scholar
  7. 7.
    Call, H. P., & Mucke, I. (1997). Journal of Biotechnology, 53, 163–202.CrossRefGoogle Scholar
  8. 8.
    Bourbonnais, R., & Paice, M. G. (1990). Applied Microbiology and Biotechnology, 36, 823–827.Google Scholar
  9. 9.
    Claus, H., Faber, G., & Konig, H. (2002). Applied Microbiology and Biotechnology, 59, 672–678.CrossRefGoogle Scholar
  10. 10.
    Leonowicz, A., Cho, N. S., Luterek, J., Wilkolazka, A., Wotjas-Wasilewska, M., Matuszewska, A., et al. (2001). Journal of Basic Microbiology, 41, 185–227.CrossRefGoogle Scholar
  11. 11.
    De Souza, C. G. M., Tychanowicz, G. K., De Souza, D. F., & Peralta, R. M. (2004). Journal of Basic Microbiology, 44, 129–136.CrossRefGoogle Scholar
  12. 12.
    Revankar, M. S., & Lele, S. S. (2006). Process Biochemistry, 41, 581–588.CrossRefGoogle Scholar
  13. 13.
    Tunga, R., Banerjee, R., & Bhattacharyya, B. C. (1999). Bioprocess Engineering, 21, 107–112.CrossRefGoogle Scholar
  14. 14.
    Pandey, A., Soccol, C. R., Rodriguez-Leon, J., & Nigam, P. (Eds.) (2001). . New Delhi, India: Asiatech.Google Scholar
  15. 15.
    Meza, J. C., Lomascolo, A., Casalot, L., Sigoillot, J., & Auria, R. (2005). Process Biochemistry, 40, 3365–3371.CrossRefGoogle Scholar
  16. 16.
    Niladevi, K. N., & Prema, P. (2005). Actinomycetologica, 19, 40–47.CrossRefGoogle Scholar
  17. 17.
    Niladevi, K. N., Sukumaran, R. K., & Prema, P. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 665–674.CrossRefGoogle Scholar
  18. 18.
    Sakurai, Y., Lee, T. H., & Shiota, H. (1977). Agricultural and Biological Chemistry, 41, 619–624.Google Scholar
  19. 19.
    Ashley, V. M., Mitchell, D. A., & Howes, T. (1999). Biochemical Engineering Journal, 3, 141–150.CrossRefGoogle Scholar
  20. 20.
    Trilli, A. (1986). In Industrial Microbiology and Biotechnology. In A. L. Demain, & N. A. Solomon (Eds.) (pp. 227–307). Washington, DC: American Society of Microbiology.Google Scholar
  21. 21.
    Lonsane, B. K., Castenada, S. G., Raimbault, M., Roussos, S., Gonzalez, V. G., Ghildyal, N. P., et al. (1992). Process Biochemistry, 27, 259–73.CrossRefGoogle Scholar
  22. 22.
    Chivukula, M., & Renganathan, V. (1995). Applied and Environmental Microbiology, 61, 4374–4377.Google Scholar
  23. 23.
    Nyanhongo, G. S., Gomes, J., Guebitz, G. M., Zvauya, R., Read, J., & Steiner, W. (2002). Water Research, 36, 1449–1456.CrossRefGoogle Scholar
  24. 24.
    Rodrıguez Couto, S., Sanroman, M., & Guebitz, G. M. (2005). Chemosphere, 58, 417–422.CrossRefGoogle Scholar
  25. 25.
    Solis-Oba, M., Ugalde-Saldıvar, V. M., Gonzalez, I., & Viniegra-Gonzalez, G. (2005). Journal of Electroanalytical Chemistry, 579, 59–66.CrossRefGoogle Scholar
  26. 26.
    Bourbonnais, R., Leech, D., & Paice, M. G. (1998). Biochim Biophys Acta, 1379, 381–390.Google Scholar
  27. 27.
    Potthast, A., Rosenau, T., Kosma, P., & Fischer, K. (1999). In Proceedings of the 10th International Symposium on Wood and Pulping Chemistry, vol. 1, Yokohama, Japan, pp. 596–601.Google Scholar
  28. 28.
    Zille, A., Munteanu, F., Guebitz, G. M., & Cavaco-Paulo, A. (2005). Journal of Molecular Catalysis B, Enzymatic, 33, 23–28.CrossRefGoogle Scholar
  29. 29.
    Almansa, E., Kandelbauera, A., Pereira, L., Cavaco-paulo, A., & Guebitz, G. M. (2004). Biocatalysis and Biotransformation, 22, 315–324.CrossRefGoogle Scholar
  30. 30.
    Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L., & Crawford, R. L. (1992). Applied and Environmental Microbiology, 58, 3605–3613.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Biotechnology DivisionNational Institute for Interdisciplinary Science and Technology (CSIR)TrivandrumIndia

Personalised recommendations