Applied Biochemistry and Biotechnology

, Volume 151, Issue 1, pp 81–92

A Moderately Thermostable Alkaline Phosphatase from Geobacillus thermodenitrificans T2: Cloning, Expression and Biochemical Characterization

  • Yong Zhang
  • Chaoneng Ji
  • Xiaoxiao Zhang
  • Zhenxing Yang
  • Jing Peng
  • Rui Qiu
  • Yi Xie
  • Yumin Mao
Article

Abstract

A gene-encoding alkaline phosphatase (AP) from thermophilic Geobacillus thermodenitrificans T2, termed Gtd AP, was cloned and sequenced. The deduced Gtd AP protein comprises 424 amino acids and shares a low homology with other known AP (<35% identity), while it exhibits the conservation of the active site and structure element of Escherichia coli AP. The Gtd AP protein, without a predicted signal peptide of 30 amino acids, was successfully overexpressed in E. coli and purified as a hexa-His-tagged fusion protein. The pH and temperature optima for purified enzyme are 9.0 and 65 °C, respectively. The enzyme retained a high activity at 45–60 °C, while it could be quickly inactivated by a heat treatment at 80 °C for 15 min, exhibiting a half-life of 8 min at 70 °C. The Km and Vmax for pNPP were determined to be 31.5 μM and 430 μM/min at optimal conditions. A divalent cation is essential, with a combination of Mg2+ and Co2+ or Zn2+ preferred. The enzyme was strongly inhibited by 10 mM ethylenediaminetetraacetic acid (EDTA) and vanadate but highly resistant to urea and dithiothreitol. The properties of Gtd AP make it suitable for application in molecular cloning or amplification.

Keywords

Alkaline phosphatase Cloning Characterization Geobacillus Thermostable 

References

  1. 1.
    McComb, R. B., Bowers, G. N., & Posen, S. (1979). Alkaline phosphatase. New York: Plenum Press.Google Scholar
  2. 2.
    Kim, E. E., & Wyckoff, H. W. (1991). Journal of Molecular Biology, 218, 449–464.CrossRefGoogle Scholar
  3. 3.
    Holtz, K. M., & Kantrowitz, E. R. (1999). FEBS Letters, 462, 7–11.CrossRefGoogle Scholar
  4. 4.
    Stec, B., Holtz, K. M., & Kantrowitz, E. R. (2000). Journal of Molecular Biology, 299, 1303–1311.CrossRefGoogle Scholar
  5. 5.
    Zueva, N. N., Dalev, P. G., & Lazarova, D. L. (1993). Biokemia, 58, 1009–1023.Google Scholar
  6. 6.
    Engvall, E., & Perlman, P. (1997). Immunochemistry, 8, 871–874.CrossRefGoogle Scholar
  7. 7.
    Millan, J. L. (1992). Clinica Chimica Acta, 209, 123–129.CrossRefGoogle Scholar
  8. 8.
    Suzuki, Y., Mizutani, Y., Tsuji, T., Ohtani, N., Takano, K., Haruki, M., et al. (2005). Bioscience, Biotechnology, and Biochemistry, 69, 364–373.CrossRefGoogle Scholar
  9. 9.
    Zappa, S., Rolland, J. L., Flament, D., Gueguen, Y., Boudrant, J., & Dietrich, J. (2001). Applied and Environmental Microbiology, 67, 4504–4511.CrossRefGoogle Scholar
  10. 10.
    McMullan, G., Christie, J. M., Rahman, T. J., Banat, I. M., Ternan, N. G., & Marchant, R. (2004). Biochemical Society Transactions, 32, 214–217.CrossRefGoogle Scholar
  11. 11.
    Kim, H. J., & Oh, D. K. (2005). Journal of Biotechnology, 120, 162–173.CrossRefGoogle Scholar
  12. 12.
    Li, H. B., & Zhang, X. B. (2005). Protein Expression and Purification, 42, 153–159.CrossRefGoogle Scholar
  13. 13.
    Ezeji, T. C., & Bahl, H. (2006). Journal of Biotechnology, 125, 27–38.CrossRefGoogle Scholar
  14. 14.
    Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor, New York, USA: Cold Spring Harbor Laboratory Press.Google Scholar
  15. 15.
    Garen, A., & Levinthal, C. (1960). Biochimica et Biophysica Acta, 38, 470–483.CrossRefGoogle Scholar
  16. 16.
    Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., et al. (1998). Applied and Environmental Microbiology, 64, 795–799.Google Scholar
  17. 17.
    Shine, J., & Dalgarno, L. (1975). Nature, 254, 34–38.CrossRefGoogle Scholar
  18. 18.
    Chang, C. N., Kuang, W. J., & Chen, E. Y. (1986). Gene, 44, 121–125.CrossRefGoogle Scholar
  19. 19.
    Hulett, M. F., Kim, E. E., Bookstein, C., Kapp, N. V., Edwards, C. W., et al. (1991). Journal of Biochemistry, 266, 1077–1084.Google Scholar
  20. 20.
    Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Journal of Molecular Biology, 340, 783–795.CrossRefGoogle Scholar
  21. 21.
    Kam, W., Clauser, E., Kim, Y. S., Kan, Y. W., & Rutter, W. J. (1985). Proceedings of the National Academy of Sciences of the United States of America, 82, 8715–8719.CrossRefGoogle Scholar
  22. 22.
    Wojciechowski, C. L., Cardia, J. P., & Kantrowitz, E. R. (2002). Protein Science, 11, 903–911.CrossRefGoogle Scholar
  23. 23.
    Murphy, J. E., Tibbitts, T. T., & Kantrowitz, E. R. (1995). Journal of Molecular Biology, 253, 604–617.CrossRefGoogle Scholar
  24. 24.
    Wojciechowski, C. L., & Kantrowitz, E. R. (2002). Journal of Biological Chemistry, 277, 50476–50481.CrossRefGoogle Scholar
  25. 25.
    Zappa, S., Boudrant, J., & Kantrowitz, E. R. (2004). Journal of Inorganic Biochemistry, 98, 575–581.CrossRefGoogle Scholar
  26. 26.
    Boulanger Jr, R. R., & Kantrowitz, E. R. (2003). Journal of Biological Chemistry, 278, 23497–23501.CrossRefGoogle Scholar
  27. 27.
    Sone, M., Kishigami, S., Yoshihisa, T., & Ito, K. (1996). Journal of Biological Chemistry, 272, 6174–6178.Google Scholar
  28. 28.
    Ásgeirsson, B., Adalbjörnsson, B. V., & Gylfason, G. A. (2007). Biochimica et Biophysica Acta, 1774, 679–687.Google Scholar
  29. 29.
    Helianti, I., Okubo, T., Morita, Y., & Tamiya, E. (2007). Applied Microbiology and Biotechnology, 74, 107–112.CrossRefGoogle Scholar
  30. 30.
    Dong, G., & Zeikus, J. G. (1997). Enzyme and Microbial Technology, 21, 335–340.CrossRefGoogle Scholar
  31. 31.
    Olsen, R. L., Øverbø, K., & Myrnes, B. (1991). Comparative Biochemistry and Physiology, 99, 755–761.CrossRefGoogle Scholar
  32. 32.
    de la Fourniere, L., Nosjean, O., Buchet, R., & Roux, B. (1995). Biochimica et Biophysica Acta, 1248, 186–192.Google Scholar
  33. 33.
    Mori, S., Okamoto, M., Nishibori, M., Ichimura, M., Sakiyama, J., & Endo, H. (1999). Biotechnology and Applied Biochemistry, 29, 235–239.Google Scholar
  34. 34.
    Kobori, H., Sullivan, C. W., & Shizuya, H. (1984). Proceedings of the National Academy of Sciences of the United States of America, 81, 6691–6695.CrossRefGoogle Scholar
  35. 35.
    Rina, M., Pozidis, C., Mavromatis, K., Tzanodaskalaki, M., Kokkinidis, M., & Bouriotis, V. (2000). European Journal of Biochemistry, 267, 1230–1238.CrossRefGoogle Scholar
  36. 36.
    Asgeirsson, B., & Andresson, O. S. (2001). Biochimica et Biophysica Acta, 1549, 99–111.Google Scholar
  37. 37.
    Murakawa, T., Yamagata, H., Tsuruta, H., & Aizono, Y. (2002). Bioscience, Biotechnology, and Biochemistry, 66, 754–761.CrossRefGoogle Scholar
  38. 38.
    Dhaked, R. K., Alam, S. I., Dixit, A., & Singh, L. (2005). Enzyme and Microbial Technology, 36, 855–861.CrossRefGoogle Scholar
  39. 39.
    Kim, Y. J., Park, T. S., Kim, H. K., & Kwon, S. T. (1997). Journal of Biochemistry and Molecular Biology, 30, 262–268.Google Scholar
  40. 40.
    Pantazaki, A. A., Karagiorgas, A. A., Liakopoulou, K. M., & Kyriakidis, D. A. (1998). Applied Biochemistry and Biotechnology, 75, 249–259.CrossRefGoogle Scholar
  41. 41.
    Yurchenko, J. V., Budilov, A. V., Deyev, S. M., Khromov, I. S., & Sobolev, A. Y. (2003). Molecular Genetics and Genomics, 270, 87–93.CrossRefGoogle Scholar
  42. 42.
    Gong, N. P., Chen, C. Y., Xie, L. P., Chen, H. T., Lin, X. Z., & Zhang, R. Q. (2005). Biochimica et Biophysica Acta, 1750, 103–111.Google Scholar
  43. 43.
    Janeway, C. M. L., Xu, X., Murphy, J. E., Chaidaroglou, A., & Kantrowitz, E. R. (1993). Biochemistry, 32, 1601–1609.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Yong Zhang
    • 1
  • Chaoneng Ji
    • 1
  • Xiaoxiao Zhang
    • 1
  • Zhenxing Yang
    • 1
  • Jing Peng
    • 1
  • Rui Qiu
    • 1
  • Yi Xie
    • 1
  • Yumin Mao
    • 1
  1. 1.State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life SciencesFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations