Applied Biochemistry and Biotechnology

, Volume 151, Issue 2–3, pp 132–142

Polycyclic Aromatic Hydrocarbons (PAHs) Biodegradation by Basidiomycetes Fungi, Pseudomonas Isolate, and Their Cocultures: Comparative In Vivo and In Silico Approach

  • A. Arun
  • P. Praveen Raja
  • R. Arthi
  • M. Ananthi
  • K. Sathish Kumar
  • M. Eyini
Article

Abstract

The polycyclic aromatic hydrocarbons (PAHs) biodegradation potential of the five basidiomycetes’ fungal monocultures and their cocultures was compared with that of a Pseudomonas isolate recovered from oil-spilled soil. As utilization of hydrocarbons by the microorganisms is associated with biosurfactant production, the level of biosurfactant production and its composition by the selected microorganisms was also investigated. The Pseudomonas isolate showed higher ability to degrade three of the five PAHs but the isolate did not produce biosurfactant higher than C. versicolor and P. ostreatus. Among the PAHs, the most effective biodegradation of PAH—pyrene (42%)—was obtained with the fungus C. versicolor. Cocultures involving the fungi and Pseudomonas could not significantly degrade the selected PAHs compounds above that degraded by the most efficient monoculture. A slight increase in pyrene degradation was observed in cocultures of C. versicolor and F. palustris (93.7% pyrene). The crude biosurfactant was biochemically characterized as a multicomponent surfactant consisting of protein and polysaccharides. The PAH biodegradation potential of the basidiomycetes fungi positively correlated with their potential to express ligninolytic enzymes such as lignin peroxidase (Lip), manganese peroxidase (Mnp), and laccase. The present study utilized in silico method such as protein–ligand docking using the FRED in Open Eye software as a tool to assess the level of ligninolytic enzymes and PAHs interactions. The in silico analysis using FRED revealed that of the five PAHs, maximum interaction occurred between pyrene and all the three ligninolytic enzymes. The results of the in silico analysis corroborated with our experimental results showing that pyrene was degraded to the maximum extent by species such as C. versicolor and P. ostreatus.

Keywords

PAHs Biodegradation Ligninolytic enzymes Biosurfactant In silico method Docking 

References

  1. 1.
    Fang, G. C., Wu, Y. S., & Chen, J. C. (2006). Environmental Pollution, 142, 388–396.CrossRefGoogle Scholar
  2. 2.
    Perera, P. F., Tang, D., Rauh, V., Lester, K., Tsai, W. Y., Tu, Y. H., et al. (2005). Environmental Health Perspectives, 113(8), 1062–1067.Google Scholar
  3. 3.
    Taneja, A., & Masih, A. (2006). Chemosphere, 65(5), 449–456.Google Scholar
  4. 4.
    Sharma, H., Jain, V. K., & Khan, Z. H. (2006). Chemosphere, 66(2), 302–310.CrossRefGoogle Scholar
  5. 5.
    Chang V, B., Wei, S. H., & Yuan, S. Y. (2000). Chemosphere, 41, 1463–1468.CrossRefGoogle Scholar
  6. 6.
    Sims, R. C., & Overcast, M. R. (1983). Residue Reviews, 88, 1–68.Google Scholar
  7. 7.
    Bezalel, L., Hadavar, Y., & Cerniglia, C. E. (1996). Applied and Environmental Microbiology, 62, 292–295.Google Scholar
  8. 8.
    Wolter, M., Zadrazil, F., Martens, R., & Bahadir, H. (1997). Applied and Environmental Microbiology, 48, 398–404.Google Scholar
  9. 9.
    Kotterman, M. J. J., Vis, E. H., & Field, J. A. (1998). Applied and Environmental Microbiology, 64, 2853–2858.Google Scholar
  10. 10.
    Vares, T., Niemenmaa, O., & Hatakka, A. (1994). Applied and Environmental Microbiology, 60, 569–575.Google Scholar
  11. 11.
    Bezalel, L., Hadavar, Y., Fu, P. P., Freeman, J. P., & Cerniglia, C. E. (1996). Applied and Environmental Microbiology, 62, 2554–2559.Google Scholar
  12. 12.
    Pickard, M. A., Roman, R., Tinoco, R., & Duhalt, R. V. (1996). Applied and Environmental Microbiology, 65, 3805–3809.Google Scholar
  13. 13.
    Novotny, C., Svobodova, K., Exbanova, P., Cajthaml, T., Kasinath, A., Lang, E., et al. (2004). Soil Biology & Biochemistry, 36, 1545–1551.CrossRefGoogle Scholar
  14. 14.
    Guiot, S. R., Beron, P., Yerushalmi, L., & Sarthoros, C. (2005). Chemosphere, 61, 1042–1050.CrossRefGoogle Scholar
  15. 15.
    Aronstein, B. N., Calvillo, Y. M., & Alexander, M. (1991). Environmental Science and Technology, 25, 1728–1731.CrossRefGoogle Scholar
  16. 16.
    Rouse, J. D., Sabatini, D. A., Suflita, J. M., & Harwell, J. H. (1994). Environmental Science and Technology, 24, 325–370.Google Scholar
  17. 17.
    Tiehm, A. (1994). Applied and Environmental Microbiology, 60, 258–263.Google Scholar
  18. 18.
    Lang, S., Gilbon, A., Syldatk, C., & Wagner, F. (1984). In K. L. Mittal, & B. Lindman (Eds.) Surfactants in solutions p. 1985. New York: Plenum.Google Scholar
  19. 19.
    Drews, J. (2000). Science, 287, 1960–1964.CrossRefGoogle Scholar
  20. 20.
    Suresh, P. S, Kumar, A., Kumar, R., & Singh, V. P. (2007). An in silico approach to bioremediation: Laccase as a case study. Journal of Molecular Graphics & Modelling. DOI 10.1016/j.jmgm.2007.05.005.
  21. 21.
    Steffen, K. T., Hofritchter, M., & Hatakka, A. (2005). Applied Microbiology and Biotechnology, 54, 819–825.CrossRefGoogle Scholar
  22. 22.
    Bodour, A. A., & Miller-Maier, R. M. (1998). Journal of Microbiological and Methods, 32, 273–280.CrossRefGoogle Scholar
  23. 23.
    Boochan, S., Britz, M. L., & Stanley, G. A. (2000). Applied and Environmental Microbiology, 66(3), 1007–1019.CrossRefGoogle Scholar
  24. 24.
    Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s manual of determinative bacteriology (9th ed.). Baltimore: Williams & Wilkins.Google Scholar
  25. 25.
    Vijaya, Ch., & Singaracharya, M. A. (2005). Indian Journal of Microbiology, 45, 75–77.Google Scholar
  26. 26.
    MarioCarlous, N. S., Martinez, M. J., Cabello, M. N., & Arambarri, A. M. (2002). Revista Iberica de Micologia, 19, 181–185.Google Scholar
  27. 27.
    Leonowicz, A., Trojanowski, J., & Olicz, B. (1978). Acta Biochimica Polonica, 25, 369–377.Google Scholar
  28. 28.
    Steffen, K. T., Hofritchter, M., & Hatakka, A. (2002). Applied Microbiology and Biotechnology, 60, 212–217.CrossRefGoogle Scholar
  29. 29.
    Mulligan, C. N., Cooper, D. G., & Neufeld, R. J. (1984). Journal of Fermentation Technology, 62(4), 311–314.Google Scholar
  30. 30.
    Marcia, N., Ferraz, C., & Pastore, M. G. (2004). Brazilian Journal of Microbiology, 35, 81–85.Google Scholar
  31. 31.
    Morikawa, M., Hirata, Y., & Imanaka, T. (2000). Biochimica et Biophysica Acta, 1488, 211–218.Google Scholar
  32. 32.
    Cooper, D. G., & Goldenberg, B. G. (1987). Applied Microbiology and Biotechnology, 53, 224–229.Google Scholar
  33. 33.
    Gornall, A. G., Bardawill, C. S., & David, M. M. (1949). Journal of Biological Chemistry, 177, 751–756.Google Scholar
  34. 34.
    Steffen, K. T., Hofritchter, M., & Hatakka, A. (2002). Enzyme and Microbial Technology, 30, 550–555.CrossRefGoogle Scholar
  35. 35.
    Yuan, S. Y., Wei, S. H., & Chang, B. V. (2000). Chemosphere, 41, 1463–1468.CrossRefGoogle Scholar
  36. 36.
    Deziel, E., Paquettle, G., Villemur, R., Lepine, F., & Besaillion, J. G. (1996). Applied and Environmental Microbiology, 62(6), 1908–1912.Google Scholar
  37. 37.
    Kanaly, R. A., & Haryama, S. (2000). Journal of Bacteriology, 182, 2059–2067.CrossRefGoogle Scholar
  38. 38.
    Doong, R., & Lei, W. G. (2003). Journal of Hazardous Materials, 96, 15–27.CrossRefGoogle Scholar
  39. 39.
    Bumpus, J. A. (1989). Applied and Environmental Microbiology, 55(1), 154–158.Google Scholar
  40. 40.
    Pozzdnyakova, N. N., Nowak, J. R., Turkovskaya, O., & Haber, J. (2006). Enzyme and Microbial Technology, 39(6), 1242–1249.CrossRefGoogle Scholar
  41. 41.
    Kamada, F., Abe, S., Hiratsuka, N., Wariishi, H., & Tanaka, H. (2002). Microbiology, 148, 1939–1946.Google Scholar
  42. 42.
    Pickard, M. A., Roman, R., Tinoco, R., & Duhalt, R. V. (1999). Applied and Environmental Microbiology, 65(9), 3805–3809.Google Scholar
  43. 43.
    Steffen, K. T., Hofritchter, M., & Hatakka, A. (2003). Applied and Environmental Microbiology, 69(7), 3957–3964.CrossRefGoogle Scholar
  44. 44.
    Launen, L., Pinto, L., Wiebe, C., Kiehlman, E., & Moore, M. (1995). Canadian Journal of Microbiology, 41, 477–488.CrossRefGoogle Scholar
  45. 45.
    Brodkorb, T. S., & Legge, R. L. (1992). Applied and Environmental Microbiology, 58, 3117–3121.Google Scholar
  46. 46.
    Carillo, P. G., Mardaraz, C., Pitta-Alvarez, S. J., & Giulietti, A. M. (1996). World Journal of Microbiology and Biotechnology, 12, 82–84.CrossRefGoogle Scholar
  47. 47.
    Yonebayashi, H., Yoshida, S., Ono, K., & Enomoto, H. (2000). Sekiyu Gakkaishi, 43(1), 59–69.Google Scholar
  48. 48.
    Makkar, R. E., & Cameotra, S. S. (1997). Journal of Industrial Microbiology and Biotechnology, 18, 37–42.CrossRefGoogle Scholar
  49. 49.
    Parra, J. L., Guinea, J., Manresa, M. A., Robert, M., Merced, M. E., Comelles, F., et al. (1989). Journal of the American Oil Chemists’ Society, 66, 141–145.CrossRefGoogle Scholar
  50. 50.
    Stringfellow, W. T., & Aitken, M. D. (1994). Canadian Journal of Microbiology, 40, 432–438.CrossRefGoogle Scholar
  51. 51.
    Volkering, F., Breure, A. M., & Andel, J. G. Y. (1992). Applied Microbiology and Biotechnology, 40, 535–540.Google Scholar
  52. 52.
    Clemente, A. R., Anazawa, T. A., & Durrant, L. R. (2001). Brazian Journal of Microbiology, 32, 255–261.Google Scholar
  53. 53.
    Makkar, R. S., & Rockne, K. J. (2003). Environmental Toxicology and Chemistry, 22(10), 2280–2292.CrossRefGoogle Scholar
  54. 54.
    Zhongming, Z., & Obbard, J. P. (2002). Journal of Environmental Quality, 31, 1842–1847.CrossRefGoogle Scholar
  55. 55.
    Batista, S. R., Mounteer, A. H., Amorim, F. R., & Totola, M. R. (2006). Bioresource Technology, 97, 868–875.CrossRefGoogle Scholar
  56. 56.
    Plaza, G. A., Zjawiony, I., & Banat, I. M. (2006). Journal of Petroleum Science and Engineering, 50, 71–77.CrossRefGoogle Scholar
  57. 57.
    Carmichael, L. M., & Pfaender, F. K. (1997). Biodegradation, 8, 1–13.CrossRefGoogle Scholar
  58. 58.
    Kanga, S. A., Bonner, J. S., Page, C. A., Mills, M. A., & Autenrieth, R. L. (1997). Environmental Science and Technology, 31, 556–561.CrossRefGoogle Scholar
  59. 59.
    Willumsen, P. A., & Karlson, U. (1997). Biodegradation, 7, 415–423.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • A. Arun
    • 1
  • P. Praveen Raja
    • 1
  • R. Arthi
    • 1
  • M. Ananthi
    • 1
  • K. Sathish Kumar
    • 1
  • M. Eyini
    • 2
  1. 1.P.G. Unit of Microbiology, Department of Zoology and MicrobiologyThiagarajar College (Autonomous)MaduraiIndia
  2. 2.Research Centre in BotanyThiagarajar College (Autonomous)MaduraiIndia

Personalised recommendations