Applied Biochemistry and Biotechnology

, Volume 151, Issue 2–3, pp 122–131 | Cite as

Cellulase Production Under Solid-State Fermentation by Trichoderma reesei RUT C30: Statistical Optimization of Process Parameters

  • Naveen Kumar Mekala
  • Reeta Rani Singhania
  • Rajeev K. SukumaranEmail author
  • Ashok Pandey


Sugar cane bagasse was used as substrate for cellulase production using Trichoderma reesei RUT C30, and the culture parameters were optimized for enhancing cellulase yield. The culture parameters, such as incubation temperature, duration of incubation, and inducer concentration, were optimized for enhancing cellulase yield using a Box–Behnken experimental design. The optimal level of each parameter for maximum cellulase production by the fungus was determined. Predicted results showed that cellulase production was highest (25.6 FPAase units per gram dry substrate) when the inducer concentration was 0.331 ml/gds, and the incubation temperature and time were 33 °C and 67 h, respectively. Crude inducer generated by cellulase action was found to be very effective in inducing cellulases. Validation of predicted results was done, and the experimental values correlated well with that of the predicted.


Cellulase Trichoderma reesei Solid-state fermentation Sugar cane bagasse Box–Behnken Bioethanol 



Authors are thankful to the Council of Scientific and Industrial Research, Govt. of India for the research grant on project CMM013 which funded this study.


  1. 1.
    Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biocommodity engineering. Biotechnology Progress, 15, 777–793.CrossRefGoogle Scholar
  2. 2.
    Reith, J. H., den Uil, H., van Veen, H., de Laat WTAM, Niessen, J. J., de Jong, E., et al. (2002). Co-production of bioethanol, electricity and heat from biomass residues. 12th European Conference and Technology Exhibition on Biomass from Energy, Industry and Climate Protection, Amsterdam, The Netherlands, 17–21 June.Google Scholar
  3. 3.
    Wen, Z., Liao, W., & Chen, S. (2005). Production of cellulase/b-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry, 40, 3087–3094.CrossRefGoogle Scholar
  4. 4.
    Chahal, D. S. (1985). Solid-state fermentation with Trichoderma reesei for cellulase production. Applied Environmental Microbiology, 56, 554–557.Google Scholar
  5. 5.
    Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues I: sugarcane bagasse. Bioresource Technology, 74, 69–80.CrossRefGoogle Scholar
  6. 6.
    Du Toit, P. J., Olivier, S. P., & van Bijon, P. L. (1984). Sugarcane bagasse as a possible source of fermentable carbohydrates. I. Characterization of bagasse with regard to monosaccharide, hemicellulose, and animoacid composition. Biotechnology and Bioengineering, 26, 1071–1078.CrossRefGoogle Scholar
  7. 7.
    Aiello, C., Ferrer, A., & Ledesma, A. (1996). Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM9414. Bioresource Technology, 57, 13–18.CrossRefGoogle Scholar
  8. 8.
    Gutierrez-Correa, M., & Tengerdy, R. P. (1997). Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnology Letters, 19(7), 665–667.CrossRefGoogle Scholar
  9. 9.
    De-Paula, E. H., Ramos, L. P., & Azevedo, M. O. (1999). The potential of Humicola grisea var thermoida for bioconversion of sugar cane bagasse. Bioresource Technology, 68, 35–41.CrossRefGoogle Scholar
  10. 10.
    Singhania, R. R., Sukumaran, R. K., & Pandey, A. (2007). Improved cellulase production by T reesei RUT C30 under SSF through process optimization. Applied Biochemistry and Biotechnology, 142(1), 60–70.CrossRefGoogle Scholar
  11. 11.
    Herbert, D., Phipps, P. J., & Strange, P. E. (1971). Chemical analysis of microbial cells. Methods in Microbiology, 5B, 249–344.Google Scholar
  12. 12.
    Ghose, T. K. (1987). Measurement of cellulase activities. Pure & Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  13. 13.
    Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2, 455–475.CrossRefGoogle Scholar
  14. 14.
    Von Sivers, M., & Zacci, G. (1995). A techno-economical comparison of three processes for the production of ethanol. Bioresource Technology, 51, 43–52.CrossRefGoogle Scholar
  15. 15.
    Raimbault, M. (1998). General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology [online], 1(3). Retrieved August 28, 2001 from issue3/full/9/9.PDF. ISSN 0717-3458.
  16. 16.
    Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Solid-state fermentation for the production of industrial enzymes. Current Science, 77, 149–152.Google Scholar
  17. 17.
    Reczey, K., Szengyel, Z. S., Eklund, R., & Zacchi, G. (1996). Cellulase production by T. reesei. Bioresource Technology, 57, 25–30.CrossRefGoogle Scholar
  18. 18.
    Gutierrez-Correa, M., Portala, L., Moreno, P., & Tengerdy, R. P. (1999). Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresource Technology, 68, 173–178.CrossRefGoogle Scholar
  19. 19.
    Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., & Zupancic, S. (1996). Production of fungal xylanases. Bioresource Technology, 58, 137–161.CrossRefGoogle Scholar
  20. 20.
    Suh, D. H., Becker, T. C., Sands, J. A., & Montenecourt, B. S. (1988). Effects of temperature on xylanase secretion by Trichoderma reesei. Biotechnology Bioengineering, 32, 821–825.CrossRefGoogle Scholar
  21. 21.
    Merivuori, H., Tornkvist, M., & Sands, J. (1990). Different temperature profiles of enzyme secretion by two common strains of Trichoderma reesei. Biotechnology Letters, 12, 117–120.CrossRefGoogle Scholar
  22. 22.
    Mandels, M., & Reese, E. T. (1960). Induction of cellulase in fungi by cellobiose. Journal Bacteriology, 79(6), 816–826.Google Scholar
  23. 23.
    Kubicek, C. P., & Penttila, M. E. (1998). Regulation of production of plant, polysaccharide degrading enzymes by Trichoderma. In E. Harman, C. P. (Eds.), Trichoderma and Gliocladium, vol 2G (pp 49–72). London: Taylor & Francis.Google Scholar
  24. 24.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorious, I. S. (2002). Microbial cellulase utilization: Fundamentals and biotechnology. Microbiology Molecular Biology Review, 66, 506–577.CrossRefGoogle Scholar
  25. 25.
    Allen, U. A. L., & Mortensen, R. E. (1981). Production of cellulase from Trichoderma reesei in fed-batch fermentation from soluble carbon sources. Biotechnology Bioengineering, 23, 2641–2645.CrossRefGoogle Scholar
  26. 26.
    Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases—Production, applications and challenges. Journal of Scientific and Industrial Research, 64, 832–844.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Naveen Kumar Mekala
    • 1
  • Reeta Rani Singhania
    • 1
  • Rajeev K. Sukumaran
    • 1
    Email author
  • Ashok Pandey
    • 1
  1. 1.Department of BiotechnologyNational Institute for Interdisciplinary Science and Technology (CSIR)TrivandrumIndia

Personalised recommendations