Applied Biochemistry and Biotechnology

, Volume 137, Issue 1–12, pp 957–970 | Cite as

Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover

  • Fei Yu
  • Shaobo Deng
  • Paul Chen
  • Yuhuan Liu
  • Yiqin Wan
  • Andrew Olson
  • David Kittelson
  • Roger Ruan
Session 6

Abstract

This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa·s at 40°C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.

Index Entries

Aging chemical behavior microwave pyrolysis physical behavior stability bio-oils 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scott, D. S., Piskorz, J., and Radlein, D. (1985), Ind. Eng. Chem. Proc. Des. Dev. 24, 581–586.CrossRefGoogle Scholar
  2. 2.
    Wornat, M. J., Porter, B. J., and Yang, N. Y. (1994), Energy Fuels 8, 1131–1142.CrossRefGoogle Scholar
  3. 3.
    Solantausta, Y., Nylund, N. O., and Gust, S. (1994), Biomass Bioenergy 7, 297–306.CrossRefGoogle Scholar
  4. 4.
    Aubin, H. and Roy, C. (1980), Fuel Sci. Technol. Int. 8, 77–86.Google Scholar
  5. 5.
    Elliott, D. C. (1994), Biomass Bioenergy 7, 179–186.CrossRefGoogle Scholar
  6. 6.
    Diebold, J. P. and Czernik, S. (1997), Energy Fuels 11, 1081–1091.CrossRefGoogle Scholar
  7. 7.
    Boucher, M. E., Chaala, A., and Roy, C. (2000), Biomass Bioenergy 19, 337–350.CrossRefGoogle Scholar
  8. 8.
    Boucher, M. E., Chaala, A., Pakdel, H., and Roy, C. (2000), Biomass Bioenergy 19, 351–361.CrossRefGoogle Scholar
  9. 9.
    Peacocke, G. V., Russel, P. A., Jenkins, J. D., and Bridgwater, A. V. (1994), Biomass Bioenergy 7, 169–178.CrossRefGoogle Scholar
  10. 10.
    Olsson, J. G., Jaglid, U., Pettersson, J. C., and Hald, P. (1997), Energy Fuels 11, 779–784.CrossRefGoogle Scholar
  11. 11.
    Oasmaa, A. and Czernik, S. (1999), Energy Fuels 13, 914–921.CrossRefGoogle Scholar
  12. 12.
    Roy, C. and Caumia, B. (1986), Fuel Sci. Technol. Int. 14, 531–539.Google Scholar
  13. 13.
    Czernik, S., Johnson, D. K., and Black, S. (1994), Biomass Bioenergy 7, 187–192.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Fei Yu
    • 1
  • Shaobo Deng
    • 1
  • Paul Chen
    • 1
  • Yuhuan Liu
    • 2
  • Yiqin Wan
    • 2
  • Andrew Olson
    • 3
  • David Kittelson
    • 3
  • Roger Ruan
    • 1
    • 2
  1. 1.Center for Biorefining and Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSt. Paul
  2. 2.Jiangxi Biomass Engineering CenterNanchang UniversityNanchangChina
  3. 3.Center for Diesel ResearchUniversity of MinnesotaMinneapolis

Personalised recommendations