Applied Biochemistry and Biotechnology

, Volume 137, Issue 1–12, pp 793–803 | Cite as

Study on the production of biodiesel by magnetic cell biocatalyst based on lipase-producing Bacillus subtilis

  • Ming Ying
  • Guanyi ChenEmail author
Session 5: Bioprocessing And Separations R&D


Production of biodiesel from waste cooking oils by a magnetic cell biocatalyst (MCB) immobilized in hydrophobic magnetic polymicrosphere is studied here. The cells of lipase-producing Bacillus subtilis were encapsulated within the net of hydrophobic carrier with magnetic particles (Fe3O4), and the secreted lipase can be conjugated with carboxyl at the magnetic polymicrosphere surface. Environmental scanning electron microscope, transmission electron microscope, and vibrating magnetometer, and so on were used to characterize the MCB. The MCB was proved to be superparamagnetic; and could be recovered by magnetic separation; moreover it could be regenerated under 48 h of cultivation. When methanolysis is carried out using MCB with waste cooking oils under stepwise additions of methanol, the methyl esters in the reaction mixture reaches about 90% after 72 h reaction in a solvent-free system. The process presented here is environmentally friendly and simple without purification and immobilized process required by the current lipase-catalyzed process. Therefore, the process is very promising for development of biodiesel fuel industry.

Index Entries

Bacillus subtilis biodiesel magnetic cell biocatalyst magnetic polymicrosphere waste cooking oils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Du, W., Xu, Y. Y., Liu, D. H., and Zeng, J. (2004), J. Mol. Catalysis B: Enzymatic 30, 125–129.CrossRefGoogle Scholar
  2. 2.
    Köse, Ö., Tüter, M., and Aksoy, A. H. (2002), Bioresour. Technol. 83, 125–129.CrossRefGoogle Scholar
  3. 3.
    Iso, M., Chen, B. X., Eguchi, M., Kudo, T., and Shrestha, S. (2001), J. Mol. Catalysis B: Enzymatic 16, 53–58.CrossRefGoogle Scholar
  4. 4.
    Oda, M., Kaieda, M., Hama, S., et al. (2005), Biochem. Eng. J. 23, 45–51.CrossRefGoogle Scholar
  5. 5.
    Bahar, T. and Celebi, S. (2000), Enzyme Microb. Technol. 26, 28–37.CrossRefGoogle Scholar
  6. 6.
    Kondo, A., Liu, Y., Furuta, M., Fujita, Y., Matsumoto, T., and Fukuda, H., (2000), Enzyme Microbial. Technol. 27, 806–811.CrossRefGoogle Scholar
  7. 7.
    Ban, K., Hama, S., Nishizuka, K., et al. (2002), J. Mol. Catalysis B: Enzymatic 17, 157–165.CrossRefGoogle Scholar
  8. 8.
    Ban, K., Kaieda, M., Matsumotoc, T., Kondo, A., and Fukuda, H. (2001), Biochem. Eng. J. 8, 39–43.CrossRefGoogle Scholar
  9. 9.
    Ruiz, C., Blanco, A., Pastor, F.I.J., and Diaz, P. (2002), FEMS Microbiol. Lett. 217, 263–267.CrossRefGoogle Scholar
  10. 10.
    Eggert, T., Brockmeier, U., Dröge, M. J., Quax, W. J., and Jaeger, K. E. (2003), FEMS Microbiol. Lett. 225, 319–324.CrossRefGoogle Scholar
  11. 11.
    Ruiz, C., Pastor, F. I. J., and Diaz, P. (2003), Lett. Appl. Microbiol. 37, 354–359.CrossRefGoogle Scholar
  12. 12.
    Eggert, T., Pouderoyen, G. V., Pencreac’h, G., et al. (2002), Colloids Surf. B: Biointerfaces. 26, 37–46.CrossRefGoogle Scholar
  13. 13.
    Pouderoyen, G. V., Eggert, T., Jaeger, K. E., and Dijkstral, B. W. (2001), J. Mol. Biol. 309, 215–226.CrossRefGoogle Scholar
  14. 14.
    Eggert, T., Pouderoyen, G. V., Dijkstrab, B. W., and Jaeger, K. E. (2001), FEBS Lett. 502, 89–92.CrossRefGoogle Scholar
  15. 15.
    Guan, M. Z. Y., Guan, Y. P., Liu, X. Q., and Liu, H. Z. (2005), Chin. J. Chem. Eng. 13, 239–243.Google Scholar
  16. 16.
    Bean, C. P. and Livingston, J. D. (1959), J. Appl. Phys. 30, 120–129.CrossRefGoogle Scholar
  17. 17.
    Xue, B. and Sun, Y. (2002), J. Chromatogr. A. 947, 185–193.CrossRefGoogle Scholar
  18. 18.
    Chantrell, R. W. and Popplewell, J. (1978), IEEE Trans. Mag. 14, 975–980.CrossRefGoogle Scholar
  19. 19.
    Zhang, M. L. and Sun, Y. (2001), J. Chromatogr. A. 912, 31–38.CrossRefGoogle Scholar
  20. 20.
    Kobayashi, H. and Matsunaga, T. (1991), J. Colloid Interface Sci. 141, 505–511.CrossRefGoogle Scholar
  21. 21.
    Kröbitz, W. (1999), Renewasble Energy 16, 1078–1083.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  1. 1.Section of Bioenergy and EnvironmentFaculty of Environmental Science and Engineering Tianjin UniversityTianjinChina
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityChina
  3. 3.State Kay Lab of Internal Combustion EngineTianjin UniversityChina

Personalised recommendations