Applied Biochemistry and Biotechnology

, Volume 137, Issue 1–12, pp 573–582

Carboxymethylcellulose obtained by ethanol/water organosolv process under acid conditions

  • Denise S. Ruzene
  • Adilson R. Gonçalves
  • José A. Teixeira
  • Maria T. Pessoa de Amorim
Session 3

Abstract

Sugar cane bagasse pulps were obtained by ethanol/water organosolv process under acid and alkaline conditions. The best condition of acid pulping for the sugarcane bagasse was 0.02 mol/L sulfuric acid at 160°C, for 1 h, whereas the best condition for alkaline pulping was 5% sodium hydroxide (base pulp) at 160°C, for 3 h. For the residual lignin removal, the acid and alkaline pulps were submitted to a chemical bleaching using sodium chlorite. Pulps under acid and alkaline conditions bleached with sodium chlorite presented viscosities of 3.6 and 7.8 mPa·s, respectively, and μ-kappa numbers of 1.1 and 2.4, respectively. The pulp under acid condition, bleached with sodium chlorite was used to obtain carboxymethylcellulose (CMC). CMC yield was 35% (pulp based), showing mass gain after the carboxymethylation reaction corresponding to 23.6% of substitution or 0.70 groups −CH2 COONa per unit of glucose residue. The infrared spectra showed the CMC characteristic bands and by the infrared technique it was possible to obtain a substitution degree (0.63), similar to the substitution degree calculated by mass gain (0.70).

Index Entries

Acid and alkaline catalyzed ethanol pulping carboxymethylcellulose chemical bleaching infrared spectra sugarcane bagasse Organosolv pulping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruzene, D. S. (2005), PhD. Thesis, Faenquil/Debiq, Lorena, Brazil.Google Scholar
  2. 2.
    Kleinert, T. N. (1974), Tappi J. 57, 99–102.Google Scholar
  3. 3.
    Aziz, S. and Sarkanen, K. (1989), Tappi J. 72, 169–175.Google Scholar
  4. 4.
    Young, R. A. and Akhtar, M. (1998), In: Environmentally Friendly Technologies for the Pulp and Paper Industry. Wiley, New York, pp. 5–69.Google Scholar
  5. 5.
    Gonçalves, A. R. and Ruzene, D. S. (2001), Appl. Biochem. Biotechnol. 91–93, 63–70.CrossRefGoogle Scholar
  6. 6.
    Gonçalves, A. R. and Ruzene, D. S. (2003), Appl. Biochem. Biotechnol. 105–108, 195–204.CrossRefGoogle Scholar
  7. 7.
    Shatalov, A. A. and Pereira, H. (2005), Carbohydr. Polym. 59, 435–442.CrossRefGoogle Scholar
  8. 8.
    Paszner, L. and Cho, H. J. (1989), Tappi J. 72, 135–142.Google Scholar
  9. 9.
    Bendzala, J. and Kokta, B. V. (1995), Wood Sci. Technol. 29, 467–479.CrossRefGoogle Scholar
  10. 10.
    Goyal, G. C., Lora, J. H., and Pye, E. K. (1992), Tappi J. 75, 110–116.Google Scholar
  11. 11.
    Raymond, A. Y. and Akhtar, M. (1998), In: Environmentally Friendly Technologies for the Pulp and Paper Industry. Wiley, New York.Google Scholar
  12. 12.
    Sarkanen, K. V. (1990), Tappi J. 73, 215–219.Google Scholar
  13. 13.
    McDonough, T. J. (1993), Tappi J. 76, 186–193.Google Scholar
  14. 14.
    Gilarranz, M. A., Oliet, M., Rodrigues, F., and Tijero, J. (1998), Can. J. Chem. Eng. 76(2), 253–260.CrossRefGoogle Scholar
  15. 15.
    Fengel, D. and Wegener, G. (1989), In: Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin.Google Scholar
  16. 16.
    Hon, D. N. S. (1996), Chemical modification of lignocellulosic materials. Marcel Dekker.Google Scholar
  17. 17.
    Heinze, T. (1998), Macromol. Chem. Phys. 199, 2341–2364.CrossRefGoogle Scholar
  18. 18.
    Sjöström, E. (1993), In: Wood Chemistry: Fundamentals and Applications, Academic Press, New York.Google Scholar
  19. 19.
    Juste, K. E. and Majewicz, T. G. (1985), In: Encyclopedia of Polymer Science and Engineering. vol. 3, Wiley, New York, pp. 226–269.Google Scholar
  20. 20.
    Biswal, D. R. and Singh, R. P. (2004), Carbohydr. Polym. 57, 379–387.CrossRefGoogle Scholar
  21. 21.
    Browing, B. L. (1963), In: The Chemistry of Wood. New York, Interscience.Google Scholar
  22. 22.
    TAPPI—Technical Association of the Pulp and Paper Industry (1985), TAPPI Standard Methods. T 236 cm-85 (kappa number).Google Scholar
  23. 23.
    TAPPI—Technical Association of the Pulp and Paper Industry (1982), TAPPI Standard Methods. T 230 om-82 (viscosity).Google Scholar
  24. 24.
    Rocha, G. J. M. (2000), PhD. Thesis, São Carlos/Universidade de São Paulo, Brazil.Google Scholar
  25. 25.
    TAPPI—Technical Association of the Pulp and Paper Industry (1999), TAPPI Standard Methods. T 230 om-99 (brightness of pulps).Google Scholar
  26. 26.
    TAPPI—Technical Association of the Pulp and Paper Industry (1999), TAPPI Standard Methods. T 236 om-99 (samples prepared).Google Scholar
  27. 27.
    Silva, P. J. (1997), MS Thesis, São Carlos/Instituto de Química, Brazil.Google Scholar
  28. 28.
    Faria, L. F. F. (1994), MS Thesis, Faenquil/Demar, Brazil.Google Scholar
  29. 29.
    Biermann, C. J. (1996), In: Handbook of Pulping and Papermaking. Academic Press, San Diego.Google Scholar
  30. 30.
    Mosai, S., Wolfaardt, J. F., Prior, B. A., and Christov, L. P. (1999), Bioresour. Technol. 68, 89–93.CrossRefGoogle Scholar
  31. 31.
    Machado, G. O. (2000), MS Thesis, São Carlos/Instituto de Química, Brazil.Google Scholar
  32. 32.
    Collier, W. E., Schultz, T. P., and Kalasinsky, V. F. (1992), Holzforschung 46(6), 523–528.CrossRefGoogle Scholar
  33. 33.
    Kimura, F., Kimura, T., and Gray, D. G. (1992), Holzforschung 46(6), 529–532.Google Scholar
  34. 34.
    Ferraz, A., Rodriguez, J., Freer, J., and Baeza, J. (2000), Bioresour. Technol. 74, 201–212.CrossRefGoogle Scholar
  35. 35.
    Morohoshi, N. (1991), In: Wood and Cellulosic Chemistry (Hon, D. N. S. and Shiraishi, N., eds.). Marcel Dekker, New York, pp. 331–392.Google Scholar
  36. 36.
    Silverstein R. M. and Bassler. (1974) In: G. C. Spectrometric Identification of Organic Compounds, 5th Ed. John Wiley, New York.Google Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Denise S. Ruzene
    • 1
  • Adilson R. Gonçalves
    • 1
  • José A. Teixeira
    • 2
  • Maria T. Pessoa de Amorim
    • 3
  1. 1.Departamento de BiotecnologiaEscola de Engenharia de Lorena-USPLorena SPBrazil
  2. 2.Centre for Biological EngineeringUniversidade do Minho, Campus de GualtarBragaPortugal
  3. 3.Centro de Engenharia TêxtilUniversidade do MinhoCampus de AzurémPortugal

Personalised recommendations