Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor

  • Yong-Jun Kim
  • Jin-Nam Kim
  • Young-Jung Wee
  • Don-Hee Park
  • Hwa-Won Ryu

Abstract

A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

Index Entries

Bacterial cellulose bioreactor fermentation Gluconacetobacter optimization rotary biofilm contactor 

References

  1. 1.
    Delmer, D. P. and Amor, Y. (1995), Plant Cell 7, 987–1000.CrossRefGoogle Scholar
  2. 2.
    Desvaux, M. (2005), FEMS Microbiol. Rev. 29, 741–764.CrossRefGoogle Scholar
  3. 3.
    Ralph, J. F., Fessenden, J. S., and Marshall, W. L. (1998), Organic Chemistry, 6th ed. Brooks/Cole Publishing Company, USA, 952p.Google Scholar
  4. 4.
    Richmond, P. A. (1991), In: Biosynthesis and Biodegradation of Cellulose, Haigler, C. H. and Weimer, P. J., (eds.), Marcel Dekker, New York, pp. 5–23.Google Scholar
  5. 5.
    Tsuchida, T. and Yohinaga, F. (1997), Pure Appl. Chem. 69, 2453–2548.CrossRefGoogle Scholar
  6. 6.
    Tahara, N., Tabuchi, M., Watanabe, K., Yano, H., Morinaga, Y., and Yoshinaga, F. (1997), Biosci. Biotechnol. Biochem. 61, 1862–1865.CrossRefGoogle Scholar
  7. 7.
    Naritomi, T., Kouda, T., Yano, H., and Yoshinaga, F. (1998), J. Ferment. Bioeng. 85, 89–95.CrossRefGoogle Scholar
  8. 8.
    Jianlong, W. (2000), Bioresour. Technol. 75, 245–247.CrossRefGoogle Scholar
  9. 9.
    Zheng, Z. and Obbard, J. P. (2002) J. Biotechnol. 96, 241–249.CrossRefGoogle Scholar
  10. 10.
    Valla, S. and Kjosbakken, J. (1981), J. Gen. Microbiol. 128, 1401–1418.Google Scholar
  11. 11.
    Kim, S. Y., Kim, J. N., Wee, Y. J., Park, D. H., and Ryu, H. W. (2006), Appl. Biochem. Biotechnol. 129, 705–715.CrossRefGoogle Scholar
  12. 12.
    Schramm, M. and Hestrin, S. (1954), Biochem. J. 56, 163–166.Google Scholar
  13. 13.
    Kouda, T., Yano, H., and Yoshinaga, F. (1997), J. Ferment. Bioeng. 83, 371–376.CrossRefGoogle Scholar
  14. 14.
    Naritomi, T., Kouda, T., Yano, H., and Yoshinaga, F. (1998), J. Ferment. Bioeng. 85, 89–95.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Yong-Jun Kim
    • 1
  • Jin-Nam Kim
    • 1
  • Young-Jung Wee
    • 2
  • Don-Hee Park
    • 2
  • Hwa-Won Ryu
    • 2
  1. 1.Department of Material Chemical and Biochemical EngineeringChonnam National UniversityGwangjuKorea
  2. 2.School of Biological Sciences and TechnologyChonnam National UniversityGwangjuKorea

Personalised recommendations