Nisin production utilizing skimmed milk aiming to reduce process cost

  • Angela Faustino Jozala
  • Maura Sayuri de Andrade
  • Luciana Juncioni de Arauz
  • Adalberto Pessoa
  • Thereza Christina Vessoni PennaEmail author
Session 3


Nisin is a natural additive for conservation of food, pharmaceutical, and dental products and can be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Gram-negative bacteria. This study was performed to optimize large-scale nisin production in skimmed milk and subproducts aiming at low-costs process and stimulating its utilization. Lactococcus lactis American Type Culture Collection (ATCC) 11454 was developed in a rotary shaker (30°C/36 h/100 rpm) in diluted skimmed milk and nisin activity, growth parameters, and media components were also studied. Nisin activity in growth media was expressed in arbitrary units (AU/mL) and converted to standard nisin concentration (Nisaplin®, 25 mg of pure nisin is 1.0×106 AU/mL). Nisin activity in skimmed milk 2.27 gtotal solids was up to threefold higher than transfers in skimmed milk 4.54 gtotal solids and was up to 85-fold higher than transfers in skimmed milk 1.14 gtotal solids. L. lactis was assayed in a New Brunswick fermentor with 1.5 L of diluted skimmed milk (2.27 gtotal solids) and airflow of 1.5 mL/min (30°C/36/200 rpm), without pH control. In this condition nisin activity was observed after 4 h (45.07 AU/mL) and in the end of 36 h process (3312.07 AU/mL). This work shows the utilization of a low-cost growth medium (diluted skimmed milk) to nisin production with wide applications. Furthermore, milk subproducts (milk whey) can be exploited in nisin production, because in Brazil 50% of milk whey is disposed with no treatment in rivers and because of high organic matter concentrations it is considered an important pollutant. In this particular case an optimized production of an antimicrobial would be lined up with industrial disposal recycling.

Index Entries

Artificial compounds EDTA fermentation processes Gram-negative Gram-positive Lactococcus lactis nisin 


  1. 1.
    Hurst, M. (1981), Appl. Microbiol. 27, 85–123.CrossRefGoogle Scholar
  2. 2.
    Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001), Int. J. Food Microbiol. 71, 1–20.CrossRefGoogle Scholar
  3. 3.
    Jung, G. (1991), Angew. Chem.Int. Ed. Engl. 30, 1051–1192.CrossRefGoogle Scholar
  4. 4.
    de Vuyst, L. and Vandamme, E. J. (1992), J. Gen. Microbiol. 138, 571–578.Google Scholar
  5. 5.
    Buchman, G. W., Banerjee, S., and Hansen, J. N. (1988), J. Biol. Chem. 263, 16,260–16,266.Google Scholar
  6. 6.
    Vessoni Penna, T. C. and Moraes, D. A. (2002), Appl. Biochem. Biotech. 98–100, 775–789.CrossRefGoogle Scholar
  7. 7.
    Hansen, J. N. (1994), Crit. Rev. Food Sci. Nutr. 34, 69–93.CrossRefGoogle Scholar
  8. 8.
    Turner, S. R., Love, R. M., and Lyons, K. M. (2004), Int. Endodontic J. 37, 664–671.CrossRefGoogle Scholar
  9. 9.
    Aranha, C., Gupta, S., and Reddy, K. V. R. (2004), Contraception 69, 333–338.CrossRefGoogle Scholar
  10. 10.
    Dubois, A. (1995), EID Dig. Dis. Div. 1(3), 79–88.Google Scholar
  11. 11.
    Sakamoto, I., Igarashi, M., and Kimura, K. (2001), J. Antimicob. Chemother. 47, 709–710.CrossRefGoogle Scholar
  12. 12.
    Biswas, S. R., Ray, P., Johnson, M. C., and Ray, B. (1991), Appl. Environ. Microbiol. 57, 1265–1267.Google Scholar
  13. 13.
    Hansen, J. N., Chung, Y., and Liu, W. (1991), ESCOM Science Publishers, pp. 287–302.Google Scholar
  14. 14.
    Stevens, K. A., Sheldon, B. W., Klapes, N. A., and Klaenhammer, T. R. (1991), J. Food Protection. 55, 763–776.Google Scholar
  15. 15.
    Ganzle, M. G., Hertel, C., and Hammes, W. P. (1999), J. Food Microbiol. 48, 37–50.CrossRefGoogle Scholar
  16. 16.
    Thomas, L. V., Clarkson, M., and Delves-Broughton, J. (2000), In: Natural Food antimicrobial systems. Naidu, A. S. (ed.), CRC Press, Washington D.C., pp. 463–524.Google Scholar
  17. 17.
    Fang, T. J. and Hung-Chi Tsai. (2004), Food Microbiol. 20, 243–253.CrossRefGoogle Scholar
  18. 18.
    Ukuku, D. O. and Fett, W. (2004), J. Food Prot. 67(10), 2143–2150.Google Scholar
  19. 19.
    Vaara, M. (1992), Microbiol. Rev. 56, 395–411.Google Scholar
  20. 20.
    Hauben, K. J. A., Wuytack, E. Y., Soontjens, C. C. F., and Michiels, C. W. (1996), J. Food Prot. 59, 350–355.Google Scholar
  21. 21.
    Shelef, L. A. and Seiter, J. (1993), In: Antimicrobial in Foods. Davidson, P. M. and Branen, A. L. (eds.), Marcel Dekker, New York, pp. 539–569.Google Scholar
  22. 22.
    Gray, G. W. and Wilkson, S. G. (1965), J. Appl. Microbiol. 28, 153.Google Scholar
  23. 23.
    Leive, L. (1965), Biochem, biophys. Res. Commun. 21, 290–296.CrossRefGoogle Scholar
  24. 24.
    Vessoni Penna, T. C., Ishii, M., Pessoa Júnior, A., Nascimento, L. O. A., Souza, L. C., and Cholewa, O. (2003), Appl. Biochem. Biotechnol. 113–116, 453–468.Google Scholar
  25. 25.
    Gill, A. O. and Holley, R. A. (2003), Int. J. Food Microbiol. 80, 251–259.CrossRefGoogle Scholar
  26. 26.
    Vessoni Penna, T. C., Jozala, A. F., Gentille, T. R., Pessoa Júnior, A., and Cholewa, O. (2006), Appl. Biochem. Biotechnol. (in press).Google Scholar
  27. 27.
    Vessoni Penna, T. C., Jozala, A. F., Novaes, L. C. L., Pessoa Júnior, A., and Cholewa, O. (2005), Appl. Biochem. Biotech. 121–124, 1–20.Google Scholar
  28. 28.
    Jozala, A. F., Novaes, L. C. L., Cholewa, O., Moraes, D., and Penna, T. C. V. (2005), A. J. Biotech. 4, 262–265.Google Scholar
  29. 29.
    Kim, W. S., Hall, R. J., and Dunn, N. W. (1997), Appl. Microbiol. Biotech. 48, 449–453.CrossRefGoogle Scholar
  30. 30.
    Somogyi, M. (1952), J. Biol. Chem. 195, 19–23.Google Scholar
  31. 31.
    Lowry, O. H., Rosebough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–375.Google Scholar
  32. 32.
    Hurst, A. and Kruse, H. (1972), Antimicrob. Agents Chemother. 1, 277–279.Google Scholar
  33. 33.
    Parente, E., Ricciardi, A., and Addario, G. (1994), Appl. Microbiol. Biotechnol. 41, 388–394.Google Scholar
  34. 34.
    Parente, E. and Ricciardi, A. (1994), Lett. Appl. Microbiol. 19, 12–15.Google Scholar
  35. 35.
    Chandrapatti, S. and O’Sullivan, D. J. (1998), J. Biotech. 63, 229–233.CrossRefGoogle Scholar
  36. 36.
    Cheigh, C. I., Choi, H. J., Park, H., et al. (2002), J. Biotech. 95, 225–235.CrossRefGoogle Scholar
  37. 37.
    Flôres, S. A. and Monte Alegre, R. (2001), Biotech. Appl. Biochem. 34, 103–107.CrossRefGoogle Scholar
  38. 38.
    Liu, X., Yoon-Kyung Chung, Shang-Tian Yang, and Yousef, A. E. (2005), Process Biochem. 40, 13–24.CrossRefGoogle Scholar
  39. 39.
    Cutter, C. N. and Siragusa G. R. (1995), J. Food Prot. 58, 977–983.Google Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Angela Faustino Jozala
    • 1
  • Maura Sayuri de Andrade
    • 1
  • Luciana Juncioni de Arauz
    • 1
  • Adalberto Pessoa
    • 1
  • Thereza Christina Vessoni Penna
    • 1
    Email author
  1. 1.Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical ScienceUniversity of São Paulo, SPBrazil

Personalised recommendations