Applied Biochemistry and Biotechnology

, Volume 137, Issue 1–12, pp 289–299 | Cite as

The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries

  • Rajesh K. Dasari
  • R. Eric BersonEmail author
Session 2


The effect of varying initial particle sizes on enzymatic hydrolysis rates and rheological properties of sawdust slurries is investigated. Slurries with four particle size ranges (33 µm<x≤75 µm, 150 µm<x≤180 µm, 295 µm<x≤425 µm, and 590 µm<x≤850 µm) were subjected to enzymatic hydrolysis using an enzyme dosage of 15 filter paper units per gram of cellulose at 50°C and 250 rpm in shaker flasks. At lower initial particle sizes, higher enzymatic reaction rates and conversions of cellulose to glucose were observed. After 72 h 50 and 55% more glucose was produced from the smallest size particles than the largest size ones, for initial solids concentration of 10 and 13% (w/w), respectively. The effect of initial particle size on viscosity over a range of shear was also investigated. For equivalent initial solids concentration, smaller particle sizes result in lower viscosities such that at a concentration of 10% (w/w), the viscosity decreased from 3000 cP for 150 µm<x≤180 µm particle size slurries to 61.4 cP for 33 µm<x≤75 µm particle size slurries. Results indicate particle size reduction may provide a means for reducing the long residence time required for the enzymatic hydrolysis step in the conversion of biomass to ethanol. Furthermore, the corresponding reduction in viscosity may allow for higher solids loading and reduced reactor sizes during large-scale processing.

Index Entries

Biomass enzymatic hydrolysis non-Newtonian particle suspension red oak wood sawdust slurry viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cristobal, C., Ruiz, E., Ballesteros, I., Negro, M. J., and Castro, E. (2006), Process Biochem. 41, 423–429.CrossRefGoogle Scholar
  2. 2.
    McCloy, B. W. and O’Connor, D. V. (1999), Wood ethanol opportunities and barriers. Report for Forest Sector Table.Google Scholar
  3. 3.
    Robert, H. F. and McKeever, D. B. (2004), Recovering wood for reuse and recycling: a United States perspective. Management of Recovered Wood Recycling, Bioenergy and Other Options, Thessaloniki, European COST E31 Conference.Google Scholar
  4. 4.
    Brownell, H. H. and Saddler, J. N. (1987), Biotechnology and Bioengineering 29(2), 228–235; Mosier, N., et al. (2005), Bioresource Technology 96, 673–686.CrossRefGoogle Scholar
  5. 5.
    Hans, E. G. (1991), Bioresource Techonol. 36, 77–82.CrossRefGoogle Scholar
  6. 6.
    Ian, F. C., Saddler, J. N., Shawn, D. M. (2004), Biotechnol. Bioeng. 85(4), 413–421.CrossRefGoogle Scholar
  7. 7.
    Charles E. W., Lee, Y. Y., Dale, B. E., et al. (2005), 2nd World Congress on Industrial Biotechnology and Bioprocessing.Google Scholar
  8. 8.
    Gusakov, A. V. and Sinitsyn, A. P. (1985), Enzyme Microb. Technol. 7, 346–352.CrossRefGoogle Scholar
  9. 9.
    Gonzalez G., Caminal, G., de Mas, C., and Santin, J. L. (1989), Biotechnol. Bioeng. 34, 242–251.CrossRefGoogle Scholar
  10. 10.
    Yerkes D. W., Zhang, H., Berson, E. R., Loha, V., Modi, S., and Tanner, R. D. (1995), Indina Chem. Eng. 37, 3, 80–89.Google Scholar
  11. 11.
    Kiran, L. K., Rydholm, E. C., and McMillan, J. D. (2004), Biotechnol. Prog. 20, 698–705.CrossRefGoogle Scholar
  12. 12.
    Kamyar, M. (2005), Biochem. Eng. J. 24, 217–223.CrossRefGoogle Scholar
  13. 13.
    Walker, L. P. and Wilson, D. B. (1991), Bioresour. Technol. 36, 3–14.CrossRefGoogle Scholar
  14. 14.
    Abasaeed, A. E. and Lee, Y. Y. (1991), Bioresour. Technol. 35, 15–21.CrossRefGoogle Scholar
  15. 15.
    Peters, L. E., Walker, L. P., Wilson, D. B., and Irwin, D. C. (1991), Bioresource Technol. 35, 313–319.CrossRefGoogle Scholar
  16. 16.
    Coughlan, M. P. (1992), Bioresour. Technol. 39, 107–115.CrossRefGoogle Scholar
  17. 17.
    Perez, L. L., Teymouri, F., Alizadeh, H., and Dale, B. E. (2005), Appl. Biochem. Biotechnol. 121–124, 1081–1099.CrossRefGoogle Scholar
  18. 18.
    Kim, S. and Hlotzapple, M. T. (2006), Bioresour. Technol. 97, 583–591.CrossRefGoogle Scholar
  19. 19.
    David, J. G. and John, N. S. (1996), Biotechnol. Bioeng. 51, 375–383.Google Scholar
  20. 20.
    Converse, A. O., Ooshima, H., Burns, D. S. (1990), Appl. Biochem. Biotechnol. 24–25, 67–73.CrossRefGoogle Scholar
  21. 21.
    Wald, S., Wilke, C. R., and Blanch, H. W. (1984), Biotechnol. Bioeng. 26, 221–230.CrossRefGoogle Scholar
  22. 22.
    Palonen, H., Tjerneld, Z. G., Tenkanen, M. (2004), J. Biotechnol. 107, 65–72.CrossRefGoogle Scholar
  23. 23.
    Eriksson, T., Karlsson, J., and Tjerneld, F. (2002), Appl. Biochem. Biotechnol. 101, 41–59.CrossRefGoogle Scholar
  24. 24.
    Millett, M. A., Baker, A. J., and Scatter, L. D. (1976), Biotechnol. Bioeng. Symp. No. 6, 125–153.Google Scholar
  25. 25.
    Fan, L. T., Lee, Y., and Gharpuray, M. M. (1982), Adv. Biochem. Eng. 23, 157–187.Google Scholar
  26. 26.
    Ebeling, T., Paillet, M., Borsali, R., et al. (1999), Am. Chem. Soc. 15(19), 6123–6126.Google Scholar
  27. 27.
    Oldshue, J. Y. (1983), Fluid Mixing Technology, McGraw Hill, New York, NY.Google Scholar
  28. 28.
    Hodge, D., Karim, M. N., Farmer, J., Schell, D. J., and McMillan, J. D. (2005), 27th Symposium on Biotechnology for Fuels and Chemicals, Denver, CO, 1–4 May.Google Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of LouisvilleLouisville

Personalised recommendations