Advertisement

Applied Biochemistry and Biotechnology

, Volume 137, Issue 1–12, pp 141–153 | Cite as

Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation

  • Mariana Peñuela Vásquez
  • Juliana Nascimento C. da Silva
  • Maurício Bezerra de Souza
  • Nei Pereira
Session 1A: Enzyme Catalysis And Engineering

Abstract

There is tremendous interest in using agro-industrial wastes, such as cellulignin, as starting materials for the production of fuels and chemicals. Cellulignin are the solids, which result from the acid hydrolysis of the sugarcane bagasse. The objective of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cellulignin, and to study its fermentation to ethanol using Saccharomyces cerevisiae. Cellulose conversion was optimized using response surface methods with pH, enzyme loading, solid percentage, and temperature as factor variables. The optimum conditions that maximized the conversion of cellulose to glucose, calculated from the initial dried weight of pretreated cellulignin, (43°C, 2%, and 24.4 FPU/g of pretreated cellulignin) such as the glucose concentration (47°C, 10%, and 25.6 FPU/g of pretreated cellulignin) were found. The desirability function was used to find conditions that optimize both, conversion to glucose and glucose concentration (47°C, 10%, and 25.9 FPU/g of pretreated cellulignin). The resulting enzymatic hydrolyzate was fermented yielding a final ethanol concentration of 30.0 g/L, in only 10 h, and reaching a volumetric productivity of 3.0 g/L·h, which is close to the values obtained in the conventional ethanol fermentation of sugar cane juice (5.0–8.0 g/L·h) in Brazil.

Index Entries

Cellulignin enzymatic hydrolysis ethanol production sugarcane bagasse cellulases simultaneous saccharification saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mais, U., Esteghlalian, A. R., Saddler, J. N., and Mansfield, S. D. (2002), Appl. Microbiol. Biotechnol. 98–100, 815–832.Google Scholar
  2. 2.
    São Paulo State Research Foundation (2004), www.fapesp.gov.br/energia1.htm, access: October, 2004.Google Scholar
  3. 3.
    Garrote, G., Dominguez, H., and Parajó, J. C. (2001), Bioresour. Technol. 79, 155–164.CrossRefGoogle Scholar
  4. 4.
    Pandey, A., Soccol, C. R., Nigam, P. E., and Soccol, V. T. (2000), Bioresource Technology 74(1), 69–80.CrossRefGoogle Scholar
  5. 5.
    D’Almeida, M. L. O. (1988), Celulose e Papel. Ed. Escola SENAI. Capítulo III. São Paulo, Brasil.Google Scholar
  6. 6.
    Buchanan, B., Gruissem, W., and Jones, R. L. (2001), Biochemistry and Molecular Biology of Plants, 3rd ed., Courier Companies, Inc, Rockville, MD.Google Scholar
  7. 7.
    Laureano-Perez, L., Farzaneh, T., Alizadeh, H., and Dale, B. E. (2005), Appl. Biochem. Biotech. 121–124, 1081–1099.CrossRefGoogle Scholar
  8. 8.
    Van Soest, P. J. (1994), Nutritional Ecology of the Ruminant. Cornell University Press, Ithaca, NY.Google Scholar
  9. 9.
    Pinto, J. H and Kramden, D. P. (1996), Appl. Biochem. Biotech. 60, 289–297.Google Scholar
  10. 10.
    Berlin, A., Gilkes, N., Arwa, K., et al. (2005), Appl. Biochem. Biotech. 121–124, 163–170.CrossRefGoogle Scholar
  11. 11.
    Sewat, V. J. H., Beauchemin, K. A., Rode, L. M., Acharya, S., and Baron, V. S. (1997), Bioresour. Technol. 61, 199–206.CrossRefGoogle Scholar
  12. 12.
    Leite, J. L., Pires, A. T. N., Ulson de Souza, S. M. A. G., and Ulson de Souza A. A. (2004), Braz. J. Chem. Eng. 21(2), 253–260.CrossRefGoogle Scholar
  13. 13.
    Sen, R. and Swaminathan, T. (1997), Appl. Microbiol. Biotechnol. 47, 358–363.CrossRefGoogle Scholar
  14. 14.
    Lynd, L. R., Weimer, P. J., Van Zyl, W. H., and Pretorius, I. S. (2002), Microbiol. Mol. Biol. Rev. 66(3), 506–577.CrossRefGoogle Scholar
  15. 15.
    Bhat, M. K. and Bhat, S. (1997), Biotecnol. Adv. 15(3/4), 583–620.CrossRefGoogle Scholar
  16. 16.
    Fogel, R., Garcia, R., Oliveira, R., Palacio, D., Madeira, L., and Pereira N., Jr. (2005), Appl. Biochem. Biotechnol. 121–124, 741–752.CrossRefGoogle Scholar
  17. 17.
    Aguiar, C. L. and Menezes, T. J. B. (2002), Biotecnologia Ciência e Desenvolvimento 26, 52–55.Google Scholar
  18. 18.
    Ghose, T. K. (1987), Pure Appl. Chem. 59(2), 257–268.CrossRefGoogle Scholar
  19. 19.
    Montgomery, D. C. (2001), Design and Analysis of Experiments, 5th ed., John Wiley & Sons, West Sussex, UK.Google Scholar
  20. 20.
    Derringer, G. and Suich, R. (1980), J. Qual. Technol. 12(4), 214–219.Google Scholar
  21. 21.
    Calado, V. and Montgomery, D. (2003), Planejamento de Experimentos Usando o Statistica. Editorial E-papers Serviços Editoriales, Rio de Janeiro, Brazil.Google Scholar
  22. 22.
    Du Preez, J. C. and Van Der Walt, J. P. (1983), Biotechnol. Lett. 6, 395–400.Google Scholar
  23. 23.
    Borzani, W., Schmidell, W., Lima, U. G., and Aquarone, E. (2001), Biotecnología Industrial. Vol. 1. Editora Edgard Blücher LTDA, São Paolo, Brazil.Google Scholar
  24. 24.
    Faria, L. F. F., Couto, M. A. P. G., Nobrega, R., and Pereira, N., Jr. (2002), Appl. Bochem. Biotechnol. 98–100, 449–458.CrossRefGoogle Scholar
  25. 25.
    Vásquez, M. P., Silva, J. N., Souza, M. B., and Pereira, N. (2005), VIII Symposium on Enzymatic hydrolysis of Biomass, Maringá, Brazil.Google Scholar
  26. 26.
    Franco, B. D. F. M. and Landgraf, M. (1996), Microbiologia dos alimentos. Ed. Atheneu, 182, São Paolo, Brazil.Google Scholar
  27. 27.
    Martin, C., Galbe, M., Nilvebrant, N., and Jönsson, L. J. (2003), Appl. Microbiol. Biotechnol. 98–100, 699–716.Google Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Mariana Peñuela Vásquez
    • 1
    • 2
  • Juliana Nascimento C. da Silva
    • 1
  • Maurício Bezerra de Souza
    • 1
  • Nei Pereira
    • 1
  1. 1.Centro de Tecnologia—Bloco EEscola de Química—Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrasil
  2. 2.Departamento de Ingeniería QuímicaUniversidad de AntioquiaColombia

Personalised recommendations