Applied Biochemistry and Biotechnology

, Volume 137, Issue 1–12, pp 81–92 | Cite as

Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures

  • Tae Hyun Kim
  • Y. Y. LeeEmail author
Session 1A: Enzyme Catalysis And Engineering


Soaking in aqueous ammonia at moderate temperatures was investigated as a method of pretreatment for enzymatic hydrolysis as well as simultaneous saccharification and cofermentation (SSCF) of corn stover. The method involves batch treatment of the feedstock with aqueous ammonia (15–30 wt%) at 40–90°C for 6–24 h. The optimum treatment conditions were found to be 15 wt% of NH3, 60°C, 1 : 6 of solid-to-liquid ratio, and 12 h of treatment time. The treated corn stover retained 100% glucan and 85% of xylan, but removed 62% of lignin. The enzymatic digestibility of the glucan content increased from 17 to 85% with 15 FPU /g-glucan enzyme loading, whereas the digestibility of the xylan content increased to 78%. The treated corn stover was also subjected to SSCF test using Spezyme-CP and recombinant Escherichia coli (KO11). The SSCF of the soaking in aqueous ammonia treated corn stover resulted in an ethanol concentration of 19.2 g/L from 3% (w/v) glucan loading, which corresponds to 77% of the maximum theoretical yield based on glucan and xylan.

Index Entries

Biofuel bioethanol biomass conversion simultaneous saccharification and cofermentation hemicellulose lignin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, V. S. and Holtzapple, M. T. (2000), Appl. Biochem. Biotechnol. 84–86, 5–37.CrossRefGoogle Scholar
  2. 2.
    Cowling, E. B. and Kirk, Ti. K. (1976), Biotechnol. Bioeng. Symp. 6, 95–123.Google Scholar
  3. 3.
    Dulap, C. E., Thomson, J., and Chiang, L. C. (1976), AIChE. Symp. Ser. 158, 7258.Google Scholar
  4. 4.
    Lee, D., Yu, A. H. C., and Saddler, J. N. (1995), Biotechnol. Bioeng. 45, 328–336.CrossRefGoogle Scholar
  5. 5.
    Mooney, C. A., Mansfield, S. D., Touhy, M. G., and Saddler, J. N. (1998), Bioresour. Technol. 64, 113–119.CrossRefGoogle Scholar
  6. 6.
    Schwald, W., Brownell, H. H., and Saddler, J. N. (1988), J. Wood Chem. Tech. 8(4), 543–560.CrossRefGoogle Scholar
  7. 7.
    Kim, S. B. (1986), PhD. Dissertation, Auburn University.Google Scholar
  8. 8.
    Kim, T. H. and Lee, Y. Y. (2005), Appl. Biochem. Biotechnol. 121–124, 1119–1132.CrossRefGoogle Scholar
  9. 9.
    Hahn-Hägerdal, B., Jeppsson, H., Olsson, L., and Mohagheghi, A. (1994), Appl. Microbiol. Biotechnol. 41, 62–72.Google Scholar
  10. 10.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (2004), Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  11. 11.
    NREL (1996), Chemical Analysis and Testing Laboratory. Analytical Procedures (CAT), National Renewable Energy Laboratory, Golden, CO.Google Scholar
  12. 12.
    Iyer, P. V., Wu, Z. W., Kim, S. B., and Lee, Y. Y. (1996), Appl. Biochem. Biotechnol. 57–58, 121–132.Google Scholar
  13. 13.
    Kim, T. H., Kim, J. S., Sunwoo, C., and Lee, Y. Y. (2003), Bioresour. Technol. 90, 39–47.CrossRefGoogle Scholar
  14. 14.
    Converse, A. O. (1993), Substrate Factors Limiting Enzymatic Hydrolysis. Biotechnology in Agriculture No. 9, in CAB Int’l, Oxford, UK, 93–106.Google Scholar
  15. 15.
    Kim, S. B. and Lee, Y. Y. (1996), Appl. Biochem. Biotechnol. 57–58, 147–156.Google Scholar
  16. 16.
    Kim, T. H. and Lee, Y. Y. (2006), Bioresour. Technol. 97, 224–232.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  1. 1.US Department of AgricultureERRC, ARSWyndmoor
  2. 2.Department of Chemical EngineeringAuburn University

Personalised recommendations