Applied Biochemistry and Biotechnology

, Volume 137, Issue 1–12, pp 3–15

Grass lignocellulose

Strategies to overcome recalcitrance
Session 1A: Enzyme Catalysis And Engineering

Abstract

Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.

Index Entries

Lignin microspectrophotometry phenolic acid esters plant breeding white-rot fungi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jung, H.-J. G. and Thompson, D. N. (2005), Appl. Biochem. Biotechnol. 121–124, 3–4.CrossRefGoogle Scholar
  2. 2.
    McMillan, J. D. (1994), In: Enzymatic Conversion of Biomass for Fuels Production. Himmel, M. E., Baker, J. O., and Overend, R. P. (eds.), American Chemical Society, Washington, DC, pp. 292–324.Google Scholar
  3. 3.
    Li, X. -L., Dien, B. S., Cotta, M. A., Wu, Y. V., and Saha, B. C. (2005), Appl. Biochem. Biotechnol. 121–124, 321–334.CrossRefGoogle Scholar
  4. 4.
    Eriksson, K. -L. (1990), In: Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants. Akin, D. E., Ljungdahl, L. G., Wilson, J. R., and Harris, P. J. (eds.), Elsevier Science Publishing Co., New York, pp. 227–233.Google Scholar
  5. 5.
    Hartley, R. D. and Ford, C. W. (1989), In: Plant Cell Wall Polymers: Biogenesis and Biodegradation. Lewis, N. G. and Paice, M. G. (eds.), American Chemical Society, Washington, DC, pp. 137–145.Google Scholar
  6. 6.
    Akin, D. E., Ljungdahl, L. G., Wilson, J. R., and Harris, P. J. (eds.), (1990), In: Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, Elsevier Science Publishing Co., New York, 428p.Google Scholar
  7. 7.
    Carpita, N. C. (1996), Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.CrossRefGoogle Scholar
  8. 8.
    Akin, D. E. and Chesson, A. (1989), Proc. Int. Grassl. Congr. 16, 1753–1760.Google Scholar
  9. 9.
    Sarkanen, K. V. and Ludwig, C. H. (1971), Lignins: Occurrence, Formation, Structure, and Reactions. Wiley-Interscience, New York, pp. 1–18.Google Scholar
  10. 10.
    Clifford, M. N. (1974), J. Chromatogr. 94, 321–324.CrossRefGoogle Scholar
  11. 11.
    Akin, D. E. (1989), Agron. J. 81, 17–25.CrossRefGoogle Scholar
  12. 12.
    Stafford, H. A. (1962), Plant Physiol. 37, 643–649.CrossRefGoogle Scholar
  13. 13.
    Harris, P. J., Hartley, R. D., and Barton, G. E. (1982), J. Sci. Food Agric. 33, 516–520.CrossRefGoogle Scholar
  14. 14.
    Akin, D. E., Hartley, R. D., Morrison, W. H. III, and Himmelsbach, D. S. (1990), Crop Sci. 30, 985–989.CrossRefGoogle Scholar
  15. 15.
    Akin, D. E., Ames-Gottfred, N., Hartley, R. D., Fulcher, R. G., and Rigsby, L. L. (1990), Crop Sci. 30, 396–401.CrossRefGoogle Scholar
  16. 16.
    Ames, N. P., Hartley, R. D., and Akin, D. E. (1992), Food Struct. 11, 25–32.Google Scholar
  17. 17.
    Hartley, R. D., Akin, D. E., Himmelsbach, D. S., and Beach, D. C. (1990), J. Sci. Food Agric. 50, 179–189.CrossRefGoogle Scholar
  18. 18.
    Weymouth, N., Dean, J. F. D., Eriksson, K. -E. L., Morrison, W. H. III, Himmelsbach, D. S., and Hartley, R. D. (1993), Nordic Pulp Pap. Res. J. No. 4, 344–349.Google Scholar
  19. 19.
    Borneman, W. S., Ljungdahl, L. G., Hartley, R. D., and Akin, D. E. (1991), Appl. Environ. Microbiol. 57, 2337–2344.Google Scholar
  20. 20.
    Stern, K. R., Jansky, S., and Bidlack, J. E. (2003), Introductory Plant Biology. McGraw-Hill, New York, pp. 183–184.Google Scholar
  21. 21.
    Akin, D. E. and Hartley, R. D. (1992), J. Sci. Food Agric. 59, 437–447.CrossRefGoogle Scholar
  22. 22.
    Hanna, W. W. and Gates, R. N. (1990), In: Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants. Akin, D. E., Ljungdahl, L. G., Wilson, J. R., and Harris, P. J. (eds.), Elsevier Science Publishing Co., New York, 197–204.Google Scholar
  23. 23.
    Burton, G. W. (1972), Crop Sci. 12, 125.CrossRefGoogle Scholar
  24. 24.
    Anderson, W. F., Peterson, J., Akin, D. E., and Morrison, W. H. III. (2005), Appl. Biochem. Biotechnol. 121–124, 303–310.CrossRefGoogle Scholar
  25. 25.
    Eriksson, K. -E. L., Blanchette, R. A., and Ander, P. (1990), Microbial and Enzymatic Degradation of Wood and Wood Components, Springer-Verlag, New York, 407p.Google Scholar
  26. 26.
    Blanchette, R. A., Burnes, T. A., Leatham, G. F., and Effland, M. J. (1988), Biomass 15, 93–101.CrossRefGoogle Scholar
  27. 27.
    Jung, H.-J. G., Valdez, F. R., Abad, A. R., Blanchette, R. A., and Hatfield, R. D. (1992), J. Anim. Sci. 70, 1928–1935.Google Scholar
  28. 28.
    Zadrazil, F. (1985), Angew. Bot. 59, 433–452.Google Scholar
  29. 29.
    Akin, D. E., Sethuraman, A., Morrison, W. H. III, Martin, S. A., and Eriksson, K. -E. L. (1993), Appl. Environ. Microbiol. 59, 4274–4282.Google Scholar
  30. 30.
    Akhtar, M., Attridge, M. C., Myers, G. C., Kirk, T. K., and Blanchette, R. A. (1992), TAPPI, February, 105–109.Google Scholar
  31. 31.
    Ruttiman-Johnson, C., Salas, L., Vicuna, R., Kirk, T. K. (1993), Appl. Environ. Microbiol. 59, 1792–1797.Google Scholar
  32. 32.
    Borneman, W. S., Hartley, R. D., Morrison, W. H., Akin, D. E., and Ljungdahl, L. G. (1990), Appl. Microbiol. Biotechnol. 33, 345–351.CrossRefGoogle Scholar
  33. 33.
    Faulds, C. B., Zanichelli, D., Crepin, V. F. et al. (2003), J. Cer. Sci. 38, 281–288.CrossRefGoogle Scholar
  34. 34.
    Lazlo, J. A., Compton, D. L., and Li, X.-L. (2006), Ind. Crops Prod. 23, 46–53.CrossRefGoogle Scholar
  35. 35.
    Akin, D. E., Morrison, W. H. III, Rigsby, L. L., Barton, F. E. II, Himmelsbach, D. S., and Hicks, K. B. (2006), Appl. Biochem. Biotechnol. 129–132, 104–116.CrossRefGoogle Scholar
  36. 36.
    Akin, D. E. (1982), Agron. J. 74, 424–428.CrossRefGoogle Scholar
  37. 37.
    Martin, S. A. and Akin, D. E. (1988), Appl. Environ. Microbiol. 54, 3019–3022.Google Scholar
  38. 38.
    Graf, E. (1992), Free Radical Biol. Med. 13, 435–448.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  1. 1.Russell Research CenterARS-USDA, Athens

Personalised recommendations