Applied Biochemistry and Biotechnology

, Volume 136, Issue 3, pp 361–388 | Cite as

Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology

A techno-economic analysis
  • B. G. HermannEmail author
  • M. Patel
Part A: Enzyme Engineering and Biotechnology


Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based bulk chemicals produced with WB. Current and future technology routes are evaluated for 15 products assuming prices of fermentable sugar between 70 ie/t and 400 ie/t and crude oil prices of US $25/barrel and US $50/barrel. The results are compared to current technology routes of petrochemical equivalents. For current state-of-the-art WB processes and a crude oil price of US $25/barrel, WB-based ethanol, 1,3-propanediol, polytrimethylene terephthalate and succinic acid are economically viable. Only three WB products are economically not viable for future technology: acetic acid, ethylene and PLA. Future-technology ethylene and PLA become economically viable for a higher crude oil price (US $50/barrel). Production costs plus profits of WB products decrease by 20–50% when changing from current to future technology for a crude oil price of US $25 per barrel and across all sugar prices. Technological progress in WB can thus contribute significantly to improved economic viability of WB products. A large-scale introduction of WB-based production of economically viable bulk chemicals would therefore be desirable if the environmental impacts are smaller than those of current petrochemical production routes.

Index Entries

White biotechnology industrial biotechnology bulk chemicals economic analysis future technology fermentation generic approach 1,3-propanediol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    EuropaBio (2005) Industrial or white biotechnology—a driver of sustainable growth in Europe, European Association for Bioindustries (EuropaBio), Brussels.Google Scholar
  2. 2.
    Patel, M., Crank, M., Dornburg, V., et al. Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources—the potential of White Biotechnology. The BREW Project, Utrecht University, Utrecht, Germany (2006).Google Scholar
  3. 3.
    Rogers, P. L. (2002) Australasian Biotechnology 12, 39–41.Google Scholar
  4. 4.
    Zanin, G. M., Santana, C. C., Bon, E. P. S., et al. (2000) Appl. Biochem. Biotech. 84, 1147–1162.CrossRefGoogle Scholar
  5. 5.
    Vink, E. T. H., Rábago, K. R., Glassner, D. A., and Gruber, P. R. (2003) Polymer Degrad. Stab. 80, 403–419.CrossRefGoogle Scholar
  6. 6.
    EuropeanCommission (2003) in 2003/30/EC pp 5, Official Journal of the European Union.Google Scholar
  7. 7.
    Bachmann, R., Bastianelli, E., Riese, J., and Schlenzka, W. (2000) in The McKinsey Quarterly. pp. 92–99.Google Scholar
  8. 8.
    Werpy, T. and Petersen, G. (2004) Top Value Added Chemicals from Biomass—Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  9. 9.
    EuropaBio (2003) White Biotech: a gateway to a more sustainable future, The European Association for Bioindustries (EuropaBio), Brussels.Google Scholar
  10. 10.
    SRI (2001) Chemicals from renewable resources, PEP 236, SRI Consulting, Menlo Park, USA.Google Scholar
  11. 11.
    Hamelinck, C. N., van Hooijdonk, G., and Faaij, A. P. C. (2005) Biomass & Bioenergy 28, 384–410.CrossRefGoogle Scholar
  12. 12.
    O'Brien, D.J., Roth, L.H., and McAloon, A.J. (2000) J. Membr. Sci. 166, 105–111.CrossRefGoogle Scholar
  13. 13.
    Wooley, R., Ruth, M.F., Glassner, D.A., and Sheehan, J. (1999) Biotech. Progr. 15, 794–803.CrossRefGoogle Scholar
  14. 14.
    Qureshi, N. and Blascheck, H. P. (2001) J. Ind. Microbiol. Biotechnol. 27, 292–297.CrossRefGoogle Scholar
  15. 15.
    Zeikus, J. G., Jain, M. K., and Elankovan, P. (1999) Appl. Microbiol. Biotech. 51, 545–552.CrossRefGoogle Scholar
  16. 16.
    Landucci, R., Goodman, B., and Wyman, C. E. (1994) Appl. Biochem. Biotech. 45/46, 677–696.CrossRefGoogle Scholar
  17. 17.
    Lynd, L. R. and Wang, M. Q. (2004) J. Ind. Ecol. 7, 17–32.CrossRefGoogle Scholar
  18. 18.
    Dornburg, V., Patel, M., and Hermann, B. G. (submitted) Scenario projections for future market potentials of bio-based bulk chemicals. Environ. Sci. Tech. Google Scholar
  19. 19.
    Hermann, B. G., Blok, K., and Patel, M. (submitted) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ. Sci. Tech. Google Scholar
  20. 20.
    Wyman, C. E. (2003) Biotech. Progr. 19, 254–262.CrossRefGoogle Scholar
  21. 21.
    Shih, I.-L., Shen, M.-H., and Van, Y.-T. (2006) Bioresource Technology 97, 1148–1159.CrossRefGoogle Scholar
  22. 22.
    Weissermel, K. and Arpe, H.-J. (2003) Industrial Organic Chemistry, 4th ed. Wiley-VCH, Weinheim.Google Scholar
  23. 23.
    Glenz, W. (2004) in Kunststoffe. pp 76–78.Google Scholar
  24. 24.
    EU (2000) Competitiveness of the Chemical Industry Sector in the CEE Candidate Countries, Brussels.Google Scholar
  25. 25.
    Campos, E.J., Qureshi, N., and Blascheck, H. P. (2002) Appl. Biochem. Biotech. 99, 553–576.CrossRefGoogle Scholar
  26. 26.
    Ezeji, T.C., Qureshi, N., and Blascheck, H.P. (2003) World J. Microbiol. Biotech. 19, 595–603.CrossRefGoogle Scholar
  27. 27.
    Lee, Y. Y., Balasubramanian, N., and Kim, J. S. (2001) Appl. Biochem. Biotech. 92, 367–376.Google Scholar
  28. 28.
    Huang, Y. L., Mann, K., Novak, J. M., and Yang, S. T. (1998) Biotech. Progr. 14, 800–806.CrossRefGoogle Scholar
  29. 29.
    Niu, W., Draths, K., and Frost, J. (2002) Biotech. Progr. 18, 201–211.CrossRefGoogle Scholar
  30. 30.
    Gryta, M., Morawski, A. W., and Tomaszewska, M. (2000) Catalysis Today 56, 159–165.CrossRefGoogle Scholar
  31. 31.
    Bayrock, D. and Ingledew, W. (2005) World J. Microbiol. Biotech. 21, 83–88.CrossRefGoogle Scholar
  32. 32.
    SRI (2002) Biotechnology separation processes, PEP 188B, SRI Consulting, Menlo Park, USA.Google Scholar
  33. 33.
    SRI (1999) 1,3-propanediol and polytrimethylene terephthalate, PEP 227, SRI Consulting, Menlo Park, USA.Google Scholar
  34. 34.
    Akiyama, M., Tsuge, T., and Doi, Y. (2003) Polymer Degrad. Stab. 80, 183–194.CrossRefGoogle Scholar
  35. 35.
    Lee, P. C., Lee, W. G., Lee, S. Y., Chang, H. N., and Chang, Y. K. (2000) Biotech. Bioproc. Eng. 5, 379–381.Google Scholar
  36. 36.
    Reismann, H. B. (1988) Economic Analysis of Fermentation Processes. CRC Press, FL: p. 94.Google Scholar
  37. 37.
    Reddy Kunduru, M., and Pometto, A. L. (1996) J. Ind. Microbiol. Biotechnol. 16, 249–256.Google Scholar
  38. 38.
    Lee, J. H., Pagan, R., and Rogers, P. L. (1983) Biotech. Bioeng. 25, 659–669.CrossRefGoogle Scholar
  39. 39.
    Wibowo, C., Chang, W.-C., and Ng, K. M. (2001) AIChE J. 47, 2474–2492.CrossRefGoogle Scholar
  40. 40.
    Fidaleo, M. and Moresi, M. (2005) Biotech. Bioeng. 91, 556–568.CrossRefGoogle Scholar
  41. 41.
    SRI (2002) Polyhydroxyalkanoates from organic wastes, PEP 2002-8, SRI Consulting, Menlo Park, USA.Google Scholar
  42. 42.
    Wisniewski, M. and Pierzchalska, M. (2005) J. Chem. Technol. Biotechnol. 80, 1425–1430.CrossRefGoogle Scholar
  43. 43.
    Lee, K.-R., Teng, M.-Y., Lee, H.-H., and Lai, J.-Y. (2000) J. Membr. Sci. 164, 13–23.CrossRefGoogle Scholar
  44. 44.
    Simons, P. and Nossin, P. (2005) personal communication.Google Scholar
  45. 45.
    Alles, C. (2003) personal communication.Google Scholar
  46. 46.
    Vink, E. T. H. (2005) personal communication.Google Scholar
  47. 47.
    SRI (1999) Lysine-Sulfate Production By Fermentation with Recovery by Spray Drying, PEP 97-8, SRI Consulting, Menlo Park, USA.Google Scholar
  48. 48.
    ORPLANA (2005) Sugarcane payment in the Sao Paulo state—in the 2003/04 season Scholar
  49. 49.
    NYBOT (2005) Historical data—Sugar 11, historicalData/indexHistoricalData.htm.Google Scholar
  50. 50.
    NYBOT (2005) Historical data—Sugar 14, historicalData/indexHistoricalData.htm.Google Scholar
  51. 51.
    Rupp-Dahlem, C. (2005) personal communication.Google Scholar
  52. 52.
    SRI (2000) PEP Yearbook International, Vol. 2M—Germany, SRI Consulting, Menlo Park, USA.Google Scholar
  53. 53.
    Li, S., Tuan, V. A., Falconer, J. L., and Noble, R. D. (2001) J. Membr. Sci. 191, 53–59.CrossRefGoogle Scholar
  54. 54.
    Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., et al. (2000) Special report on Emission Scenarios (SRES), 599 p, Cambridge University Press, Cambridge.Google Scholar
  55. 55.
    Ren, T., Patel, M., and Blok, K. (2006) Energy 31, 425–451.CrossRefGoogle Scholar
  56. 56.
    ArcherDanielsMidland (2006) ADM Names Clinton, Iowa as Location for PHA Plant, Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  1. 1.Science, Technology & SocietyUtrecht UniversityCS UtrechtThe Netherlands

Personalised recommendations