Applied Biochemistry and Biotechnology

, Volume 144, Issue 3, pp 293–300 | Cite as

An Improved Enzyme Assay for Molybdenum-Reducing Activity in Bacteria

  • M. Y. Shukor
  • M. F. A. Rahman
  • N. A. Shamaan
  • C. H. Lee
  • M. I. A. Karim
  • M. A. Syed


Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, Km for the laboratory-prepared 10:4-phosphomolybdate is 2.56 ± 0.25 mM (arbitrary concentration), whereas the apparent Vmax is 99.4 ± 2.85 nmol Mo-blue min−1 mg−1 protein. The apparent Michaelis constant or Km for NADH as the electron donor is 1.38 ± 0.09 mM, whereas the apparent Vmax is 102.6 ± 1.73 nmol Mo-blue min−1 mg−1 protein. The apparent Km and Vmax for another electron donor, NADPH, is 1.43 ± 0.10 mM and 57.16 ± 1.01 nmol Mo-blue min−1 mg−1 protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent Vmax obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.


Assay Mo-reducing enzyme Molybdate Phosphomolybdate Molybdenum blue 


  1. 1.
    Davis, G. K. (1991). In E. Merian (Ed.) In metals and their compounds in the environment, occurrence, analysis and biological relevance pp. 1089–1100. Weinheim: VCH.Google Scholar
  2. 2.
    Neunhäuserer, C., Berreck, M., & Insam, H. (2001). Water, Air and Soil Pollution, 128, 85–96.CrossRefGoogle Scholar
  3. 3.
    Yong, F. S. (2000). Mamut copper mine—The untold story. The National Seminar On The Malaysian Minerals Industry “Minerals: Underpinning yesterday’s needs, today’s development and tomorrows’s growth” 22nd to 24th June 2000, Pacific Sutera Hotel, Kota Kinabalu, Sabah, Malaysia.Google Scholar
  4. 4.
    Levine, V. E. (1925). Journal of Bacteriology, 10, 217–263.Google Scholar
  5. 5.
    Capaldi, A., & Proskauer, B. (1896). Zeitschr. f. Hyg. u. Infektionskrankh., 23, 452–474.CrossRefGoogle Scholar
  6. 6.
    Jan, A. (1939). Bulletin des Sciences Pharmacologiques, 46, 336–339.Google Scholar
  7. 7.
    Marchal, J. G., & Gerard, T. H. (1948). Travaux du Laboratoire de microbiologie de la Faculté de Pharmacie de Nancy, 16, 11–23.Google Scholar
  8. 8.
    Woolfolk, C. A., & Whiteley, H. R. (1962). Journal of Bacteriology, 84, 647–658.Google Scholar
  9. 9.
    Bautista, E. M., & Alexander, M. (1972). Soil Science Society of America Proc., 36, 918–920.CrossRefGoogle Scholar
  10. 10.
    Campbell, M. A., Campbell, A. D., & Villaret, D. B. (1985). Proceedings of the National Academy of Sciences of the United States of America, 82, 227–231.CrossRefGoogle Scholar
  11. 11.
    Sugio, T., Tsujita, Y., Katagiri, T., Inagaki, K., & Tano, T. (1988). Journal of Bacteriology, 170(12), 5956–5959.Google Scholar
  12. 12.
    Yong, N. K., Oshima, M., Blake, R. C., & Sugio, T. (1997). Bioscience, Biotechnology, and Biochemistry, 61, 1523–1526.CrossRefGoogle Scholar
  13. 13.
    Lee, J. D. (1977). Concise inorganic chemistry. New York: Reinhold.Google Scholar
  14. 14.
    Sidgwick, N. V. (1984). The chemical elements and their compounds. Oxford: Clarendon.Google Scholar
  15. 15.
    Ghani, B., Takai, M., Hisham, N. Z., Kishimito, N., Ismail, M. I. A., Tano, T., et al. (1993). Applied and Environmental Microbiology, 59, 1176–1180.Google Scholar
  16. 16.
    Kazansky, L. P., & Fedotov, M. A. (1980). Journal of the Chemical Society, Chemical Communications, 13, 644–647.CrossRefGoogle Scholar
  17. 17.
    Munch, J. C., & Ottow, J. C. G. (1983). Environmental Biogeochemistry, Ecological Bulletin (Stockholm), 35, 383–394.Google Scholar
  18. 18.
    Shukor, M. Y., Syed, M. A., Lee, C. H., Karim, M. I. A., & Shamaan, N. A. (2002). Malaysian Journal of Biochemistry, 7, 71–72.Google Scholar
  19. 19.
    Ariff, A. B., Rosfarizan, M., Ghani, B., Sugio, T., & Karim, M. I. A. (1997). World Journal of Microbiology & Biotechnology, 13, 643–647.CrossRefGoogle Scholar
  20. 20.
    Shukor, M. Y., Lee, C. H., Omar, I., Karim, M. I. A., Syed, M. A., & Shamaan, N. A. (2003). Pertanika, Journal of Science and Technology, 11(2), 261–272.Google Scholar
  21. 21.
    Glenn, J. L., & Crane, F. L. (1956). Biochimica et Biophysica Acta, 22, 111–115.CrossRefGoogle Scholar
  22. 22.
    R. M. C. Dawson, D. C. Elliott, W. H. Elliott, & K. M. Jones (Eds.) (1969). Data for biochemical research. Oxford: Clarendon.Google Scholar
  23. 23.
    Bradford, M. (1976). Analytical Biochemistry, 72, 248–252.CrossRefGoogle Scholar
  24. 24.
    Shukor, M. Y., Shamaan, N. A., Syed, M. A., Lee, C. H., & Karim, M. I. A. (2000). Asia Pacific Journal of Molecular Biology Biotechnologies, 8(2), 167–172.Google Scholar
  25. 25.
    Killefer, D. H., & Linz, A. (1952). Molybdenum compounds; Their chemistry and technology. New York: Interscience.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • M. Y. Shukor
    • 1
  • M. F. A. Rahman
    • 1
  • N. A. Shamaan
    • 1
  • C. H. Lee
    • 1
  • M. I. A. Karim
    • 2
  • M. A. Syed
    • 1
  1. 1.Department of Biochemistry, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSelangorMalaysia
  2. 2.Department of Biotechnology Engineering, Faculty of EngineeringInternational Islamic University, MalaysiaKuala LumpurMalaysia

Personalised recommendations