Applied Biochemistry and Biotechnology

, Volume 148, Issue 1–3, pp 35–44 | Cite as

Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading

  • Tania I. Georgieva
  • Xiaoru Hou
  • Troels Hilstrøm
  • Birgitte K. Ahring


Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15–20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.


Saccharomyces cerevisiae Simultaneous saccharification and fermentation Wet explosion Pretreatment Wheat straw High dry matter Ethanol 



We thank Novozymes A/S, Bagsvaerd, Denmark, for supplying the enzymes Celluclast and Novozyme 188, and Thomas Andersen from BioCentrum for the technical help.


  1. 1.
    Kim, S., & Dale, B. E. (2004). Biomass Bioenergy, 26, 361–375.CrossRefGoogle Scholar
  2. 2.
    Jørgensen, H., Kristensen, J., & Felby, C. (2007). Biofuels Bioproducts and Biorefinery, 1, 119–134.CrossRefGoogle Scholar
  3. 3.
    Schmidt, A. S., & Thomsen, A. B. (1998). Bioresource Technology, 64, 139–151.CrossRefGoogle Scholar
  4. 4.
    Ballesteros, I., Negro, M. J., Oliva, J. M., Cabanas, A., & Ballesteros, M. (2006). Applied Biochemistry and Biotechnology, 129–132, 496–508.CrossRefGoogle Scholar
  5. 5.
    Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Process Biochemistry, 40, 3693–3700.CrossRefGoogle Scholar
  6. 6.
    Thomsen, M. H., Thygesen, A., Jørgensen, H., Larsen, J., Christensen, B. H., & Thomsen, A. B. (2006). Applied Biochemistry and Biotechnology, 129–132, 448–460.Google Scholar
  7. 7.
    Ahring, B. K. & Munck, J. (2006) Patent no. WO 2006-032282 A1.Google Scholar
  8. 8.
    Mohagheghi, A., Tucker, M., Grohmann, K., & Wyman, C. (1992). Applied Biochemistry and Biotechnology, 33, 67–81.CrossRefGoogle Scholar
  9. 9.
    Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Biotechnology and Bioengineering, 96, 862–870.CrossRefGoogle Scholar
  10. 10.
    Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme and Microbial Technology, 28, 835–844.CrossRefGoogle Scholar
  11. 11.
    Felby, C., Klinke, H. B., Olsen, H. S., & Thomsen, A. B. (2003). Applications of Enzymes to Lignocellulosics, 855, 157–174.Google Scholar
  12. 12.
    Galbe, M., & Zacchi, G. (2002). Applied Microbiology Biotechnology, 59, 618–628.CrossRefGoogle Scholar
  13. 13.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluite, J., Templeton, D., & Crocker, D. (2006).
  14. 14.
    Hartmann, H., & Ahring, B. K. (2005). Water Research, 39, 1543–1552.CrossRefGoogle Scholar
  15. 15.
    American Public Health Association/American Water Works Association/Water Environmental Federation (1995) Standard methods for the examination of water and wastewater, 19th ed. American Public Health Association/American Water Works Association/Water Environmental Federation, Washington DC, USA.Google Scholar
  16. 16.
    Georgieva, T. I., Mikkelsen, M. J., & Ahring, B. K. (2007). Applied Biochemistry and Biotechnology DOI  10.1007/s12010-007-8014-1.
  17. 17.
    Lu, Y. P., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Applied Biochemistry and Biotechnology, 98, 641–654.CrossRefGoogle Scholar
  18. 18.
    Tengborg, C., Galbe, M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117.CrossRefGoogle Scholar
  19. 19.
    Ingesson, H., Zacchi, G., Yang, B., Esteghlalian, A. R., & Saddler, J. N. (2001). Journal of Biotechnology, 88, 177–182.CrossRefGoogle Scholar
  20. 20.
    Xiao, Z. Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 113–16, 1115–1126.CrossRefGoogle Scholar
  21. 21.
    Panagiotou, G., & Olsson, L. (2007). Biotechnology and Bioengineering, 96, 250–258.CrossRefGoogle Scholar
  22. 22.
    Varga, E., Klinke, H. B., Reczey, K., & Thomsen, A. B. (2004). Biotechnology and Bioengineering, 88, 567–574.CrossRefGoogle Scholar
  23. 23.
    Stenberg, K., Bollok, M., Reczey, K., Galbe, M., & Zacchi, G. (2000). Biotechnology and Bioengineering, 68, 204–210.CrossRefGoogle Scholar
  24. 24.
    Sassner, P., Galbe, M., & Zacchi, G. (2006). Enzyme and Microbial Technology, 39, 756–762.CrossRefGoogle Scholar
  25. 25.
    Öhgren, K., Vehmaanpera, J., Siika-Aho, M., Galbe, M., Viikari, L., & Zacchi, G. (2006). Enzyme and Microbial Technology EMT-7322.Google Scholar
  26. 26.
    Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000). Journal of Industrial Microbiology and Biotechnology, 25, 184–192.CrossRefGoogle Scholar
  27. 27.
    Zhu, S. D., Wu, Y. X., Yu, Z. N., Zhang, X., Wang, C. W., Yu, F. Q., & Jin, S. W. (2006). Process Biochemistry, 41, 869–873.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Tania I. Georgieva
    • 1
    • 2
  • Xiaoru Hou
    • 1
  • Troels Hilstrøm
    • 1
    • 3
  • Birgitte K. Ahring
    • 1
  1. 1.BioScience and Technology Group, BioCentrum–DTUTechnical University of DenmarkLyngbyDenmark
  2. 2.Fluxome ScienceLyngbyDenmark
  3. 3.BioGasol ApSDTULyngbyDenmark

Personalised recommendations