Applied Biochemistry and Biotechnology

, Volume 146, Issue 1–3, pp 119–128 | Cite as

The Effects of Wheat Bran Composition on the Production of Biomass-Hydrolyzing Enzymes by Penicillium decumbens

Article

Abstract

The effects of the starch, protein, and soluble oligosaccharides contents in wheat bran on the extracellular biomass-hydrolyzing enzymes activities released by Penicillium decumbens mycelia grown in batch fermentations have been examined. The results showed increased starch content correlated directly with an increase in released amylase activity but inversely with the levels of secreted cellulase and xylanase. High amounts of protein in wheat bran also reduced the activities of cellulase, xylanase and protease in the culture medium. The effects of the soluble and insoluble components of wheat bran and cello-oligosaccharides supplements on production of extracellular cellulase and xylanase were compared. The soluble cello-oligosaccharides compositions in wheat bran were proved to be one of the most significant factors for cellulase production. According to the results of this research, determining and regulating the composition of wheat bran used as a fermentation supplement may allow for improved induction of cellulase and xylanase production.

Keywords

Penicillium decumbens Wheat bran Biomass Cellulase Xylanase 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (grant no. 30570049) and State Key Development Program for Basic Research of China (grant no. 2003CB716006). The authors are grateful to Prof. John N. Reeve (Department of Microbiology, Ohio State University, USA) for valuable insights and discussions on the manuscript.

References

  1. 1.
    Brown, J. A., Collin, S. A., & Wood, T. M. (1987). Enzyme and Microbial Technology, 9, 176–180.CrossRefGoogle Scholar
  2. 2.
    Jørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson L. (2005). Enzyme and Microbial Technology, 36, 42–48.CrossRefGoogle Scholar
  3. 3.
    Qu, Y. B., Gao, P. J., & Wang, Z. N. (1984). Acta Mycologica Sinica (Chinese), 3, 238–243.Google Scholar
  4. 4.
    Qu, Y. B., Zhao, X., Gao, P. J., & Wang, Z. N. (1991). Applied Biochemistry and Biotechnology, 28/29, 363–368.Google Scholar
  5. 5.
    Mo, H., Zhang, X., & Li, Z. (2004). Process Biochemistry, 39, 1293–1297.CrossRefGoogle Scholar
  6. 6.
    Qu, Y. B., Gao, P. J., & Wang, Z. N. (1987). Journal of Shandong University (Chinese), 22, 97–103.Google Scholar
  7. 7.
    Carre, B., & Brillouet, J. M. (1986). Journal of the Science of Food and Agriculture, 37, 341–351.CrossRefGoogle Scholar
  8. 8.
    Ralet, M. C., Thibault, J. F., & Della-Valle, G. (1990). Journal of Cereal Science, 11, 793–812.CrossRefGoogle Scholar
  9. 9.
    Wayman, M., & Chen, S. (1992). Enzyme Microbiology Technology, 14, 825–831.CrossRefGoogle Scholar
  10. 10.
    Maes, C., & Delcour, J. A. (2002). Journal of Cereal Science, 35, 315–326.CrossRefGoogle Scholar
  11. 11.
    Xu, H., Qian, W., Zhu, M. T., Cai, C. P., & Gao, P. J. (1997). Food and Fermentation Industries (Chinese), 23, 15–17.Google Scholar
  12. 12.
    Palmarola-Adrados, B., Chotěborská, P., Galbe, M., & Zacchi, G. (2005). Bioresource Technology, 96, 843–850.CrossRefGoogle Scholar
  13. 13.
    Maeda, H., Sano, M., Maruyama, Y., Tanno, T., Akao, T., Totsuka, Y., et al. (2004). Applied Microbiology and Biotechnology, 65, 74–83.CrossRefGoogle Scholar
  14. 14.
    Hrmova, M., Petrakova, E., & Biely, P. (1991). Journal of General Microbiology, 137, 541–547.Google Scholar
  15. 15.
    Schmoll, M., & Kubicek, C. P. (2003). Acta Microbiologica et Immunologica Hungarica, 50, 125–145.CrossRefGoogle Scholar
  16. 16.
    Suto, M., & Tomita, F. (2001). Journal of Bioscience and Bioengineering, 92, 305–311.CrossRefGoogle Scholar
  17. 17.
    Kurasawa, T., Yachi, M., Suto, M., Kamagata, Y., Takao, S., & Tomita, F. (1992). Applied and Environmental Microbiology, 58, l06–110.Google Scholar
  18. 18.
    Kubicek, C. P. (1987). Journal of General Microbiology, 133, 1481–1487.Google Scholar
  19. 19.
    Claeyssens, M., van Tilbeurgh, H., Kramerling, J. P., Berg, J., Vrsanska, M., & Biely, P. (1990). Biochemical Journal, 270, 251–256.Google Scholar
  20. 20.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  21. 21.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  22. 22.
    Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112.CrossRefGoogle Scholar
  23. 23.
    Chahal, D. S. (1985). Applied and Environmental Microbiology, 49, 205–210.Google Scholar
  24. 24.
    Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.CrossRefGoogle Scholar
  25. 25.
    Lin, J. Q., Lee, S. M., & Koo, Y. M. (2000). Biotechnology and Bioprocess Engineering, 5, 382–385.Google Scholar
  26. 26.
    Holm, J., Bjorck, I., Drews, A., & Asp, N. G. (1986). Starch/Starke, 38, 224–226.CrossRefGoogle Scholar
  27. 27.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  28. 28.
    Krogh, K. B., Morkeberg, A., Jorgensen, H., Frisvad, J. C., & Olsson, L. (2004). Applied Biochemistry and Biotechnology, 113, 389–401.CrossRefGoogle Scholar
  29. 29.
    Carle-Urioste, J. C., Escobar-Vera, J., El-Gogary, S., Henrique-Silva, F., Torigoi, E., Crivellaro, O., et al. (1997). Journal of Biological Chemistry, 272, 10169–10174.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial TechnologyShandong UniversityJinanChina

Personalised recommendations