Applied Biochemistry and Biotechnology

, Volume 145, Issue 1–3, pp 13–21 | Cite as

Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol

  • William F. AndersonEmail author
  • Bruce S. Dien
  • Sarah K. Brandon
  • Joy Doran Peterson


Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g−1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g−1) and two giant reed clones (109 and 85 mg g−1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g−1) being superior to Coastal (247 mg g−1) and Tifton 44 (245 mg g−1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.


Biomass Bioethanol Bermudagrass Energy crops 



Enzymatically pretreated materials were supplied by Dr. Danny E. Akin; sugarand phenolic acid data were provided by W. Herbert Morrison III.


  1. 1.
    Grabber, J. H. (2005). Crop Science, 45, 820–831.CrossRefGoogle Scholar
  2. 2.
    Hartley, R. D., & Ford, C. W. (1989). In N. G. Lewis & M. G. Paice (Eds.), Plant cell wall polymers: Biogenesis and biodegradation (pp. 137–145). Washington, D.C., American Chemical Society.Google Scholar
  3. 3.
    Akin, D. E. (1989). Agronomy Journal, 81, 17–25.CrossRefGoogle Scholar
  4. 4.
    Akin, D. E., & Chesson, A. (1989). Proceedings of the International Grassland Congress, 16, 1753–1760.Google Scholar
  5. 5.
    Anderson, W. F., Peterson, J., Akin, D. E., & Morrison, W. H. III. (2005). Applied Biochemistry and Biotechnology, 121–124, 303–310.CrossRefGoogle Scholar
  6. 6.
    Akin, D. E., Ames-Gottfried, N., Hartley, R. D., Fulcher, R. D., & Rigsby L. L. (1990). Crop Science, 30, 396–401.Google Scholar
  7. 7.
    Hill, G. M., Gates, R. N., West, J. W., Watson, R. S. & Mullinix, B. G. (2001). Journal of Animal Science, 79(1), 235.Google Scholar
  8. 8.
    Jung, H. G., & Allen, M. S. (1995). Journal of Animal Science, 73, 2774–2790.Google Scholar
  9. 9.
    Burton, G. W., Gates, R. N., & Hill, G. M. (1993). Crop Science, 33, 644–645.CrossRefGoogle Scholar
  10. 10.
    Mandedebvu, P., West, J. W., Hill, G. M., Gates, R. N., Hatfield, R. D., Mullinix, B. G., et al. (1999). Journal of Animal Science, 77, 1572–1586.Google Scholar
  11. 11.
    Bouton J. (2002). In Bioenergy crop breeding and production research in the southeast, ORNL/SUB-02-19XSV810C/01.Google Scholar
  12. 12.
    Prine, G. M., Stricker, J. A. & McConnell, W. V. (1997), Proc. 3rd Biomass Conference of the America: Making a Business from Biomass in Energy, Environment, Chemicals, Fibers and Materials, 1, 227–235.Google Scholar
  13. 13.
    Prine, G. M., Mislevy, P. ,Stanley, R. L., Jr., Dunavin, L. S. & Bransby,D. I.. (1991). In D. L. Klass (Ed.), Proc. final program of conference on energy from biomass and wastes XV. Paper No. 24, 8p.Google Scholar
  14. 14.
    Vincente-Chandler, J., Abruna, F., Caso-Costas, R., Figarella, J., Silva, S., & Pearson, R. (1974). University of Puerto Rico Bulletin, 233.Google Scholar
  15. 15.
    Hanna, W. W., Chaparro, C. J., Mathews, B. W., Burns, J. C., & Sollenberger, L. E. (2004). In L. E. Moser, B. L. Burson, & L. E. Sollenberger (Eds.), American society of agronomy monograph series (pp. 503–535). Madison, WI: American Society of Agronomy.Google Scholar
  16. 16.
    Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). Biomass and Bioenergy, 25, 335–361.CrossRefGoogle Scholar
  17. 17.
    Tilley, J. M. A & Terry, R. A. (1963). Journal of the British Grassland Society, 18, 104–111.CrossRefGoogle Scholar
  18. 18.
    Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Journal of Dairy Science, 74, 3583–3597.CrossRefGoogle Scholar
  19. 19.
    Vogel, K. P., Pederson, J. F., Masterson, S. D., & Toy, J. J. (1999). Crop Science, 39, 276–279.CrossRefGoogle Scholar
  20. 20.
    Yomano, L. P., York, S. W., & Ingram, L. O. (1998). Journal of Industrial Microbiology and Biotechnology, 20, 132–138.CrossRefGoogle Scholar
  21. 21.
    Gonzalez, R., Tao, H., Purvis, J. E., York, S. W., Shanmugam, K. T., & Ingram, L. O. (2003). Biotechnology Progress, 19, 612–623.CrossRefGoogle Scholar
  22. 22.
    Doran, J. B., Cripe, J., Sutton, M., & Foster, B. (2000). Applied Biochemistry and Biotechnology, 84–86, 141–152.CrossRefGoogle Scholar
  23. 23.
    Morrison, W. H., III, Akin, D. E., Ramaswamy, G. & Baldwin, D. (1996), Textile Research Journal, 66, 651–656.CrossRefGoogle Scholar
  24. 24.
    SAS Institute. (1999). Version 7 SAS Inst. Cary, NC.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • William F. Anderson
    • 1
    • 4
    Email author
  • Bruce S. Dien
    • 2
  • Sarah K. Brandon
    • 3
  • Joy Doran Peterson
    • 3
  1. 1.Coastal Plain Experiment Station, ARS-USDATiftonUSA
  3. 3.Department of MicrobiologyUniversity of GeorgiaAthensUSA
  4. 4.Crop Genetics and Breeding Research UnitUSDA/ARSTiftonUSA

Personalised recommendations