Applied Biochemistry and Biotechnology

, Volume 146, Issue 1–3, pp 231–248

Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

  • Yi Zheng
  • Zhongli Pan
  • Ruihong Zhang
  • Donghai Wang
  • Bryan Jenkins
Article

Abstract

Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

Keywords

Saline Creeping Wild Ryegrass Cellulase  β-Glucosidase Tween 20 Tween 80 Bovine serum albumin Enzymatic hydrolysis Avicel PH101 Lignaceous residue 

Abbreviations

CWR

Creeping Wild Ryegrass, Leymus triticoides

BSA

bovine serum albumin

FPU

cellulase activity

CBU

β-glucosidase activity

Tween 80

poly(oxyethylene)20-sorbitan-monooleate

Tween 20

poly(oxyethylene)20-sorbitan-monolaurate

SSF

simultaneous saccharification and fermentation

DI water

deionized water

HPLC

high-performance liquid chromatography

References

  1. 1.
    Sheehan, J., & Himmel, M. (1999). Biotechnology Progress, 15, 817–827.CrossRefGoogle Scholar
  2. 2.
    Alkasrawi, M., Erriksson, T., Borjesson, J., Wingren, A., Galbe, M., & Zacchi, G. (2003). Enzyme and Microbial Technology, 33, 71–78.CrossRefGoogle Scholar
  3. 3.
    Kristensen, J. B., Borjesson, J. Bruun, M., Tjerneld, F., & Jorgensen, H. (2007). Enzyme and Microbial Technology, 40, 888–895.CrossRefGoogle Scholar
  4. 4.
    Gregg, D. J., & Saddler, J. N. (1996). Biotechnology and Bioengineering, 51, 375–383.CrossRefGoogle Scholar
  5. 5.
    Himmel, M. E., Ruth, M. F., & Wyman, C. E. (1999). Current Opinion in Biotechnology, 10, 358–364.CrossRefGoogle Scholar
  6. 6.
    Wooley, R., Ruth, M., Glassner, D., & Sheehan, J. (1999). Biotechnology Progress, 15, 794–803.CrossRefGoogle Scholar
  7. 7.
    Eriksson, T., Borjesson, J., & Tjerneld, F. (2002). Enzyme and Microbial Technology, 31, 353–364.CrossRefGoogle Scholar
  8. 8.
    Borjesson, J., Peterson, R., & Tjernel, F. (2007). Enzyme and Microbial Technology, 40, 754–762.CrossRefGoogle Scholar
  9. 9.
    Mooney, C., Mansfield, S., Touhy, M., & Saddler, J. (1998). Bioresource Technology, 64, 113–119.CrossRefGoogle Scholar
  10. 10.
    Valjamae, P., Sild, V., Nutt, A., Pettersson, G., & Johansson, G. (1999). European Journal of Biochemistry, 266, 327–334.CrossRefGoogle Scholar
  11. 11.
    Eriksson, T., Karlsson, J., & Tjerneld, F. (2002). Applied Biochemistry and Biotechnology, 101, 41–60.CrossRefGoogle Scholar
  12. 12.
    Sutcliffe, R., & Saddler, J. N. (1986). Biotechnology and Bioengineering Symposium, 17, 749–762.Google Scholar
  13. 13.
    Ooshima, H., Burns, D. S., & Converse, A. O. (1990). Biotechnology and Bioengineering, 36, 446–452.CrossRefGoogle Scholar
  14. 14.
    Lu, Y. P., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Applied Biochemistry and Biotechnology, 98, 641–654.CrossRefGoogle Scholar
  15. 15.
    Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72.CrossRefGoogle Scholar
  16. 16.
    Berlin, A., Gilkes, N., Kurabi, A., Bura, R., Tu, M. B., Kilburn, D., et al. (2005). Applied Biochemistry and Biotechnology, 121–124, 163–170.CrossRefGoogle Scholar
  17. 17.
    Yang, B., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 611–617.CrossRefGoogle Scholar
  18. 18.
    Sewalt, V. J. H., Glasser, W. G., & Beauchemin, K. A. (1997). Journal of Agricultural and Food Chemistry, 45, 1823–1828.CrossRefGoogle Scholar
  19. 19.
    Kim, S., & Holtzapple, M. T. (2006). Bioresource Technology, 97, 583–591.CrossRefGoogle Scholar
  20. 20.
    Castanon, M., & Wilke, C. R. (1981). Biotechnology and Bioengineering, 23, 1365–1372.CrossRefGoogle Scholar
  21. 21.
    Ballesteros, I., Oliva, J. M., Carrasco, J., Cabanas, A., Navarro, A. A., & Ballesteros, M. (1998). Applied Biochemistry and Biotechnology, 70–72, 369–381.CrossRefGoogle Scholar
  22. 22.
    Helle, S. S., Duff, S. J. B., & Cooper, D. G. (1993). Biotechnology and Bioengineering, 42, 611–617.CrossRefGoogle Scholar
  23. 23.
    Kaar, W. E., & Holtzapple, M. T. (1998). Biotechnology and Bioengineering, 59, 419–427.CrossRefGoogle Scholar
  24. 24.
    Wu, J., & Ju, L.-K. (1998). Biotechnology Progress, 14, 649–652.CrossRefGoogle Scholar
  25. 25.
    Ooshima, H., Sakata, M., & Harano, Y. (1986). Biotechnology and Bioengineering, 28, 1727–1734.CrossRefGoogle Scholar
  26. 26.
    Tanaka, M., Takenawa, S., Matsuno, R., & Kamikubo, T. (1978). Journal of Fermentation Technology, 56, 108–113.Google Scholar
  27. 27.
    Kawamoto, H., Nakatsubo, F., & Murakami, K. (1992). Mokuzai Gakkaishi, 38, 81–84.Google Scholar
  28. 28.
    Haynes, H. A., & Norde, W. (1994). Colloids and Surfaces B, 2, 517–566.CrossRefGoogle Scholar
  29. 29.
    Reese, E. T., & Maguire, A. (1969). Applied Microbiology, 17, 242–245.Google Scholar
  30. 30.
    Reese, E. T., & Maguire, A. (1971). Developments in Industrial Microbiology, 12, 212–224.Google Scholar
  31. 31.
    Pardo, A. G. (1996). Current Microbiology, 33, 275–278.CrossRefGoogle Scholar
  32. 32.
    Zheng, Y., Pan, Z., Zhang, R., Labvitch, J., Wang, D., Teter, S., et al. (2007). Applied Biochemistry and Biotechnology, 136–140, 423–435.CrossRefGoogle Scholar
  33. 33.
    Desai, S. G., & Converse, A. O. (1997). Biotechnology and Bioengineering, 56, 650–655.CrossRefGoogle Scholar
  34. 34.
    Medve, J., Karlsson, J., Lee, D., & Tjerneld, F. (1998). Biotechnology and Bioengineering, 59, 621–634.CrossRefGoogle Scholar
  35. 35.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  36. 36.
    Moloney, A., & Coughlan, M. P. (1983). Biotechnology and Bioengineering, 25, 271–280.CrossRefGoogle Scholar
  37. 37.
    Ooshima, H., Sakata, M., & Harano, Y. (1983). Biotechnology and Bioengineering, 25, 3103–3114.CrossRefGoogle Scholar
  38. 38.
    Mizutani, C., Sethumadhavan, K., Howley, P., & Bertoniere, N. (2002). Cellulose, 9, 83–89.CrossRefGoogle Scholar
  39. 39.
    Park, J. W., Takahata, Y., Kajiuchi, T., & Akehata, T. (1992). Biotechnology and Bioengineering, 39, 117–120.CrossRefGoogle Scholar
  40. 40.
    Borjesson, J., Engqvist, M., Sipos, B., & Tjerneld, F. (2007). Enzyme and Microbial Technology, 41, 186–195.CrossRefGoogle Scholar
  41. 41.
    Kim, M. H., Lee, S. B., & Ryu, D. D. Y. (1982). Enzyme and Microbial Technology, 4, 99–103.CrossRefGoogle Scholar
  42. 42.
    Herskovitz, T. T., & Jaillet, H. (1969). Science, 163, 282–285.CrossRefGoogle Scholar
  43. 43.
    Badley, R. A., Carruthers, L., & Phillips, M. C. (1977). Biochimica et Biophysica Acta, 495, 110–118.Google Scholar
  44. 44.
    Reese, E. T., & Robbins, F. M. (1981). Journal of Colloid and Interface Science, 83, 393–400.CrossRefGoogle Scholar
  45. 45.
    Kurakake, M., Ooshima, H., Kato, J., & Harano, Y. (1994). Bioresource Technology, 49, 247–251.CrossRefGoogle Scholar
  46. 46.
    Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J. K. C., et al. (1989). Biochemistry, 28, 7241–7257.CrossRefGoogle Scholar
  47. 47.
    Reinikainen, T., Ruohonen, L., Nevanen, T., Laaksonen, L., Kraulis, P., Jones, T. A., et al. (1992). Proteins: Struct. Funct. Genet. 14, 475–482.CrossRefGoogle Scholar
  48. 48.
    Yang, B., & Wyman, C. E. (2004). US Patent 0,185,542.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Yi Zheng
    • 1
  • Zhongli Pan
    • 1
    • 2
  • Ruihong Zhang
    • 1
  • Donghai Wang
    • 3
  • Bryan Jenkins
    • 1
  1. 1.Biological and Agricultural Engineering DepartmentUniversity of California, DavisDavisUSA
  2. 2.Processed Foods Research UnitUSDA–ARS–WRRCSt. AlbanyUSA
  3. 3.Biological and Agricultural Engineering DepartmentKansas State UniversityManhattanUSA

Personalised recommendations