Advertisement

Applied Biochemistry and Biotechnology

, Volume 145, Issue 1–3, pp 99–110 | Cite as

Ethanol Production from Wet-Exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor

  • Tania I. Georgieva
  • Marie J. Mikkelsen
  • Birgitte K. Ahring
Article

Abstract

Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70°C. Undetoxified wheat straw hydrolysate was used (3–12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39–0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68–76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.

Keywords

Ethanol Wet-explosion Thermophilic anaerobic bacteria Wheat straw Fluidized bed reactor Lignocellulose 

Notes

Acknowledgements

We thank Novozymes A/S for providing enzymes Celluclast and Novozyme 188. We further thank Thomas Andersen and Gitte Hinz-Berg from BioCentrum for excellent technical help.

Reference

  1. 1.
    Kim, S., & Dale, B. E. (2004). Biomass and Bioenergy, 26, 361–375.CrossRefGoogle Scholar
  2. 2.
    Olsson, L., & Hahn-Hägerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.CrossRefGoogle Scholar
  3. 3.
    Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33.CrossRefGoogle Scholar
  4. 4.
    Von Sivers, M., Zacchi, G., Olsson, L., & Hahn-Hägerdal, B. (1994). Biotechnology Progress, 10, 555–560.CrossRefGoogle Scholar
  5. 5.
    Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Applied Microbiology and Biotechnology, 63, 258–266.CrossRefGoogle Scholar
  6. 6.
    Aristidou, A., & Penttila, M. (2000). Current Opinion in Biotechnology, 11, 187–198.CrossRefGoogle Scholar
  7. 7.
    Saha, B. C. (2003). Journal of Industrial Microbiology and Biotechnology, 30, 279–291.CrossRefGoogle Scholar
  8. 8.
    Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34.CrossRefGoogle Scholar
  9. 9.
    Moniruzzaman, M., Dien, B. S., Skory, C. D., Chen, Z. D., Hespell, R. B., Ho, N. W. Y., et al. (1997). World Journal of Microbiology and Biotechnology, 13, 341–346.CrossRefGoogle Scholar
  10. 10.
    Klapatch, T. R., Hogsett, D. A. L., Baskaran, S., Pal, S., & Lynd, L. R. (1994). Applied Biochemistry and Biotechnology, 45–46, 209–223.CrossRefGoogle Scholar
  11. 11.
    Lynd, L. R. (1989). In Advances in biochemical engineering/biotechnology (vol 38, pp. 1–52). New York: Springer.Google Scholar
  12. 12.
    Georgieva, T. I., Mikkelsen, M. J., & Ahring, B. K. (2007). Central European Journal of Biology, DOI  10.2478/s11535-007-0026-x.
  13. 13.
    Sommer, P., Georgieva, T., & Ahring, B. K. (2004). Biochemical Society Transactions, 32, 283–289.CrossRefGoogle Scholar
  14. 14.
    Schmidt, J. E., & Ahring, B. K. (1999). Applied and Environmental Microbiology, 65, 1050–1054.Google Scholar
  15. 15.
    Desai, S. G., Guerinot, M. L., & Lynd, L. R. (2004). Applied Microbiology and Biotechnology, 65, 600–605.CrossRefGoogle Scholar
  16. 16.
    Lynd, L. R., Baskaran, S., & Casten, S. (2001). Biotechnology Progress, 17, 118–125.CrossRefGoogle Scholar
  17. 17.
    Hild, H. M., Stuckey, D. C., & Leak, D. J. (2003). Applied Microbiology and Biotechnology, 60, 679–686.Google Scholar
  18. 18.
    Hill, P. W., Klapatch, T. R., & Lynd, L. R. (1993). Biotechnology and Bioengineering, 42, 873–883.CrossRefGoogle Scholar
  19. 19.
    Lynd, L. R., Weimer, P. J., van Zyl W. H, & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRefGoogle Scholar
  20. 20.
    Georgieva, T., & Ahring, B. K. (2007). 29th Symposium on Biotechnology for Fuels and Chemicals, 51.Google Scholar
  21. 21.
    Zaldivar, J., Roca, C., Le Foll, C., Hahn-Hägerdal, B., & Olsson, L. (2005). Bioresource Technology, 96, 1670–1676.CrossRefGoogle Scholar
  22. 22.
    Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.CrossRefGoogle Scholar
  23. 23.
    Banat, I. M., Nigam, P., Singh, D., Marchant, R., & Mchale, A. P. (1998). World Journal of Microbiology and Biotechnology, 14, 809–821.CrossRefGoogle Scholar
  24. 24.
    Hörmeyer, H. F., Tailliez, P., Millet, J., Girard, H., Bonn, G., Bobleter, O., et al. (1988). Applied Microbiology and Biotechnology, 29, 528–535.CrossRefGoogle Scholar
  25. 25.
    Lynd, L. R., Grethlein, H. E., & Wolkin, R. H. (1989). Applied and Environmental Microbiology, 55, 3131–3139.Google Scholar
  26. 26.
    Kaur, H. R. P. (1989). Biological Wastes, 30, 301–308.CrossRefGoogle Scholar
  27. 27.
    Saha, B. C., & Cotta, M. A. (2006). Biotechnology Progress, 22, 449–453.CrossRefGoogle Scholar
  28. 28.
    Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Process Biochemistry, 40, 3693–3700.CrossRefGoogle Scholar
  29. 29.
    Nigam, J. N. (2001). Journal of Biotechnology, 87, 17–27.CrossRefGoogle Scholar
  30. 30.
    Amartey, S. A., Leung, P. C. J., Baghaei-Yazdi, N., Leak, D. J., & Hartley, B. S. (1999). Process Biochemistry, 34, 289–294.CrossRefGoogle Scholar
  31. 31.
    Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000) Journal of Industrial Microbiology and Biotechnology, 25, 184–192.CrossRefGoogle Scholar
  32. 32.
    Felby, C., Klinke, H. B., Olsen, H. S., & Thomsen, A. B. (2003). Applications of Enzymes to Lignocellulosics, 855, 157–174.Google Scholar
  33. 33.
    Mohagheghi, A., Tucker, M., Grohmann, K., & Wyman, C. (1992). Applied Biochemistry and Biotechnology, 33, 67–81.CrossRefGoogle Scholar
  34. 34.
    Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848.CrossRefGoogle Scholar
  35. 35.
    Szczodrak, J. (1988). Biotechnology and Bioengineering, 32, 771–776.CrossRefGoogle Scholar
  36. 36.
    Baskaran, S., Ahn, H. J., & Lynd, L. R. (1995). Biotechnology Progress, 11, 276–281.CrossRefGoogle Scholar
  37. 37.
    Burdette, D. S., Jung, S. H., Shen, G. J., Hollingsworth, R. I., & Zeikus, J. G. (2002). Applied and Environmental Microbiology, 68, 1914–1918.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Tania I. Georgieva
    • 1
  • Marie J. Mikkelsen
    • 1
    • 2
  • Birgitte K. Ahring
    • 1
  1. 1.BioScience and Technology Group, BioCentrum-DTUTechnical University of DenmarkLyngbyDenmark
  2. 2.BioGasol ApSDTULyngbyDenmark

Personalised recommendations