Advertisement

Applied Biochemistry and Biotechnology

, Volume 143, Issue 3, pp 212–223 | Cite as

Developments in Directed Evolution for Improving Enzyme Functions

  • S. Sen
  • V. Venkata Dasu
  • B. Mandal
Article

Abstract

The engineering of enzymes with altered activity, specificity, and stability, using directed evolution techniques that mimic evolution on a laboratory timescale, is now well established. In vitro recombination techniques such as DNA shuffling, staggered extension process (StEP), random chimeragenesis on transient templates (RACHITT), iterative truncation for the creation of hybrid enzymes (ITCHY), recombined extension on truncated templates (RETT), and so on have been developed to mimic and accelerate nature’s recombination strategy. This review discusses gradual advances in the techniques and strategies used for the directed evolution of biocatalytic enzymes aimed at improving the quality and potential of enzyme libraries, their advantages, and disadvantages.

Keywords

Directed evolution DNA shuffling In vitro recombination Mutagenesis Random priming 

References

  1. 1.
    Nikolaos, E. L. (2005). Biomolecular Engineering, 22, vii–ix.CrossRefGoogle Scholar
  2. 2.
    Cherry, J. R., & Fidantsef, A. L. (2003). Current Opinion in Biotechnology, 14, 438–443.CrossRefGoogle Scholar
  3. 3.
    Anwar, A., & Saleemuddin M. (1998). Bioresource Technology, 64, 175–183.CrossRefGoogle Scholar
  4. 4.
    Bylina, E. J., Coleman, W. J., Grek, C. L., Yang, M. M., & Youvan, D. C. (2000). Biotechnology Et Alia, 7, 1–6.Google Scholar
  5. 5.
    Bornscheuer, U. T., & Pohl, M. (2001). Current Opinion in Chemical Biology, 5, 137–143.CrossRefGoogle Scholar
  6. 6.
    Mills, D. R., Peterson, R. L., & Spiegelman, S. (1967). Proceedings of the National Academy of Sciences of the United States of America, 58, 217–224.CrossRefGoogle Scholar
  7. 7.
    Tao, H., & Cornish, V. W. (2002). Current Opinion in Chemical Biology, 6, 858–864.CrossRefGoogle Scholar
  8. 8.
    Schmidt-Dannert, C., & Arnold, F. H. (1999). Trends Biotechnology, 17, 135–136.CrossRefGoogle Scholar
  9. 9.
    Roodveldt, C., Aharoni, A., & Tawfik, D. S. (2005). Current Opinion in Structural Biology, 15, 50–56.CrossRefGoogle Scholar
  10. 10.
    Schmidt-Dannert, C. (2001). Biochemistry, 40, 13125–13136.CrossRefGoogle Scholar
  11. 11.
    Williams, G. J., Nelson, A. S., & Berry (2004). Cellular and Molecular Life Sciences, 61, 3034–3046.CrossRefGoogle Scholar
  12. 12.
    You, L., & Arnold, F. H. (1996). Protein Engineering, 9, 77–83.CrossRefGoogle Scholar
  13. 13.
    Hibbert, E. G., & Dalby, P. A. (2005). Microbial Cell Factories, 4, 29.CrossRefGoogle Scholar
  14. 14.
    Wong, T. S., Tee, K. L., Hauer, B., & Schwaneberg, U. (2004). Nucleic Acids Research, 32, 3e26.Google Scholar
  15. 15.
    Chen-Goodspeed, M., Sogorb, M. A., Wu, F., & Raushel, F. M. (2001). Biochemistry, 40, 1332–1339.CrossRefGoogle Scholar
  16. 16.
    Ozaki, S. I., & Ortiz de, M. P. R. (1994). Journal of the American Chemical Society, 116, 4487–4488.CrossRefGoogle Scholar
  17. 17.
    Reetz, M. T., Wilensek, S., Zha, D., & Jaeger, K. E. (2001). Angewandte Chemie. International Edition in English, 40, 3589–3591.CrossRefGoogle Scholar
  18. 18.
    Chen, R. (2001). Trends Biotechnology, 19, 13–14.CrossRefGoogle Scholar
  19. 19.
    DeSantis, G., & Jones, J. B. (1999). Current Opinion in Biotechnology, 10, 324–330.CrossRefGoogle Scholar
  20. 20.
    Davis, B. G. (2003). Current Opinion in Biotechnology, 14, 379–386.CrossRefGoogle Scholar
  21. 21.
    Hibbert, E. G., Baganz, F., Hailes, H. C., Ward, J. M., Lye, G. J., Woodley, J. M., et al. (2005). Biomolecular Engineering, 22, 11–19.CrossRefGoogle Scholar
  22. 22.
    Pritcharda, L., Corneb, D., Kella, D., Rowland, J., & Winson, M. (2005). Journal of Theoretical Biology, 234, 497–509.CrossRefGoogle Scholar
  23. 23.
    Fujii, R., Kitaoka, M., & Hayashi, K. (2004). Nucleic Acids Research, 32, 19 e145.CrossRefGoogle Scholar
  24. 24.
    Niu, W., Li, Z., Zhang, D., Yu, M., & Tan, T. (2006). Journal of Molecular Catalysis, B: Enzymatic, 43, 33–39.CrossRefGoogle Scholar
  25. 25.
    Otten, L. G., Sio, C. F., Vrielink, J., Cool, R. H., & Quax, W. J. (2002). Journal of Biological Chemistry, 277, 42121–42127.CrossRefGoogle Scholar
  26. 26.
    Reetz, M. T., Torre, C., Eipper, A., Lohmer, R., Hermes, M., Brunner, B., et al. (2004). Organic Letters, 6, 177–180.CrossRefGoogle Scholar
  27. 27.
    Stemmer, W. P. C. (1994). Proceedings of the National Academy of Sciences of the United States of America, 91, 10747–10751.CrossRefGoogle Scholar
  28. 28.
    Zhao, H., & Arnold, F. H. (1997). Nucleic Acids Research, 25, 1307–1308.CrossRefGoogle Scholar
  29. 29.
    Miyazaki, K. (2002). Nucleic Acids Research, 30, 24 e139.CrossRefGoogle Scholar
  30. 30.
    Binkowski, B. F., Richmond, K. E., Kaysen, J., Sussman, M. R., & Belshaw, P. J. (2005). Nucleic Acids Research, 33, 6 e55.CrossRefGoogle Scholar
  31. 31.
    Vanhercke, T., Ampe, C., Tirry, L., & Denolf, P. (2005). Analytical Biochemistry, 339, 9–14.CrossRefGoogle Scholar
  32. 32.
    Shao, Z., Zhao, H., Giver, L., & Arnold, F. H. (1998). Nucleic Acids Research, 26, 681–683.CrossRefGoogle Scholar
  33. 33.
    Volkov, A. A., Shao, Z., & Arnold, F. H. (1999). Nucleic Acids Research, 27, 18 e18.CrossRefGoogle Scholar
  34. 34.
    Pelletier, J. N. (2001). Nature Biotechnology, 19, 314–315.CrossRefGoogle Scholar
  35. 35.
    Lee, S. H., Ryu, E. J., Kang, M. J., Wang, E., Piao, Z., Choi, Y. J., et al. (2003). Journal of Molecular Catalysis, B: Enzymatic, 26, 119–129.CrossRefGoogle Scholar
  36. 36.
    Coco, W. M., Levinson, W. E., Michael, J. C., Harm, J. H., Aldis, D., Pienkos, P. T., et al. (2001). Nature Biotechnology, 19, 354–359.CrossRefGoogle Scholar
  37. 37.
    Lutz, S., Ostermeier, M., & Benkovic, S. J. (2001). Nucleic Acids Research, 29, 4 e16.CrossRefGoogle Scholar
  38. 38.
    Lutz, S., Ostermeier, M., Moore, G. L., Maranas, C. D., & Benkovic, S. J. (2001). PNAS, 98, 11248–11253.CrossRefGoogle Scholar
  39. 39.
    Zhao, H., Chockalingam, K., & Chen, Z. (2002). Current Opinion in Biotechnology, 13, 104–110.CrossRefGoogle Scholar
  40. 40.
    Gibbs, M. D., Nevalainen, K. M. H., & Bergquist, P. L. (2001). Gene, 271, 13–20.CrossRefGoogle Scholar
  41. 41.
    Bergquist, P. L., Reeves, R. A., & Gibbs, M. D. (2005). Biomolecular Engineering, 22, 63–72.CrossRefGoogle Scholar
  42. 42.
    Wong, T. S., Roccatano D., Zacharias, M., & Schwaneberg, U. (2006). Journal of Molecular Biology, 355, 858–871.CrossRefGoogle Scholar
  43. 43.
    Muller, K. M., Stebel, S. C., Knall, S., Zipf, G., Bernauer, H. S., & Arndt, K. M. (2005). Nucleic Acids Research, 33(13), e117.CrossRefGoogle Scholar
  44. 44.
    Miyazaki, K., & Arnold, F. H. (1999). Journal of Molecular Evolution, 49, 716–720.CrossRefGoogle Scholar
  45. 45.
    Neylon, C. (2004). Nucleic Acids Research, 32(4), 1448–1459.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Centre for the EnvironmentIndian Institute of Technology (IIT)–GuwahatiGuwahatiIndia

Personalised recommendations