Applied Biochemistry and Biotechnology

, Volume 143, Issue 1, pp 27–40 | Cite as

Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw

  • Lisa Rosgaard
  • Pavle Andric
  • Kim Dam-Johansen
  • Sven Pedersen
  • Anne S. Meyer
Article

Abstract

In this study, the applicability of a “fed-batch” strategy, that is, sequential loading of substrate or substrate plus enzymes during enzymatic hydrolysis was evaluated for hydrolysis of steam-pretreated barley straw. The specific aims were to achieve hydrolysis of high substrate levels, low viscosity during hydrolysis, and high glucose concentrations. An enzyme system comprising Celluclast and Novozyme 188, a commercial cellulase product derived from Trichoderma reesei and a β-glucosidase derived from Aspergillus niger, respectively, was used for the enzymatic hydrolysis. The highest final glucose concentration, 78 g/l, after 72 h of reaction, was obtained with an initial, full substrate loading of 15% dry matter weight/weight (w/w DM). Conversely, the glucose yields, in grams per gram of DM, were highest at lower substrate concentrations, with the highest glucose yield being 0.53 g/g DM for the reaction with a substrate loading of 5% w/w DM after 72 h. The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates of conversion varied in the different reactions. Rapid cellulose degradation was accompanied by rapid decreases in viscosity before addition of extra substrate, but when extra substrate or substrate plus enzymes were added, the viscosities of the slurries increased and the hydrolytic efficiencies decreased temporarily.

Keywords

Lignocellulose Enzymatic hydrolysis Glucose yield Viscosity 

References

  1. 1.
    Dien, B. S., Bothast, R. J., Nichols, N. N., & Cotta, M. A. (2002). International Sugar Journal, 104(1241), 204–211.Google Scholar
  2. 2.
    Robertson, G. H., Wong, D. W. S., Lee, C. C., Wagschal, K., Smith, M. R., & Orts, W. J. (2006). Journal of Agricultural and Food Chemistry, 54, 353–365.CrossRefGoogle Scholar
  3. 3.
    Sun, Y., & Cheng, J. (2002) Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  4. 4.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  5. 5.
    Varga, E., Klinke, H. B., Réczey, K., & Thomsen, A. B. (2004). Biotechnology and Bioengineering, 88(5), 567–574.CrossRefGoogle Scholar
  6. 6.
    Thompson, D. N., & Chen, H.-C. (1992). Bioresource Technology, 39, 155–163.CrossRefGoogle Scholar
  7. 7.
    Sheehan, J., & Himmel, M. E. (1999). Biotechnology Progress, 15, 817–827.CrossRefGoogle Scholar
  8. 8.
    Wooley, R., Ruth, M., Glassner, D., & Sheehan, J. (1999). Biotechnology Progress, 15, 794–803.CrossRefGoogle Scholar
  9. 9.
    Thomas, K. C., & Ingledew, W. M. (1992). Journal of Industrial Microbiology, 10, 61–68.CrossRefGoogle Scholar
  10. 10.
    Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72.CrossRefGoogle Scholar
  11. 11.
    Eriksson, T., Karlsson, J., & Tjerneld, F. (2002). Applied Biochemistry and Biotechnology, 101, 41–59.CrossRefGoogle Scholar
  12. 12.
    Sluiter, A. (2005). Laboratory Analytical Procedure 002. Retrieved from http://www1.eere.energy.gov/biomass/analytical_procedures.html#LAP-002.
  13. 13.
    Adey, B., & Baker, J. (1996). Laboratory Analytical Procedure 006. Retrieved from http://devafdc.nrel.gov/pdfs/4689.pdf.
  14. 14.
    Rosgaard, L., Pedersen, S., Cherry, J. R., Harris, P., & Meyer, A. S. (2006). Biotechnology Progress, 22, 493–498.CrossRefGoogle Scholar
  15. 15.
    Linde, M., Galbe, M., & Zacchi, G. (2006). Applied Biochemistry and Biotechnology, 129–132, 546–562.CrossRefGoogle Scholar
  16. 16.
    Tengborg, C., Galbe M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117.CrossRefGoogle Scholar
  17. 17.
    Yang, B., Willies, D. M., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 1122–1128.CrossRefGoogle Scholar
  18. 18.
    Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Journal of Biotechnology, 125, 198–209.CrossRefGoogle Scholar
  19. 19.
    Mes-Hartree, M., & Saddler, J. N. (1983). Biotechnology Letters, 5, 531–536.CrossRefGoogle Scholar
  20. 20.
    Pimenova, N. V., & Hanley, T. R. (2004). Applied Biochemistry and Biotechnology, 113–116, 347–360.CrossRefGoogle Scholar
  21. 21.
    Allen, D. G., & Robinson, C. W. (1990). Chemical Engineering Science, 45(1), 37–48.CrossRefGoogle Scholar
  22. 22.
    Barnes, H. A., & Nguyen, Q. D. (2001). Journal of Non-Newtonian Fluid Mechanics, 98, 1–14.CrossRefGoogle Scholar
  23. 23.
    Svihla, C. K., Dronawat, S. N., Donnelly, J. A., Rieth, T. C., & Hanley, T. R. (1997). Applied Biochemistry and Biotechnology, 63–5, 375–385.CrossRefGoogle Scholar
  24. 24.
    Brookfield Engineering Lab. Inc. Retrieved from http://www.can-am.net/suppliers/brookfield/more_solutions.pdf.
  25. 25.
    Takahashi, T., & Sakata, T. (2002). Journal of Nutrition, 132(5), 1026–1030.Google Scholar
  26. 26.
    Houchin, T. L., & Hanley, T. R. (2004). Applied Biochemistry and Biotechnology, 113, 723–732.CrossRefGoogle Scholar
  27. 27.
    Rudolf, A., Alkasrawi, M., Zacchi, G., & Lidén, G. (2005). Enzyme and Microbial Technology, 37, 195–204.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Lisa Rosgaard
    • 1
  • Pavle Andric
    • 2
  • Kim Dam-Johansen
    • 2
  • Sven Pedersen
    • 1
  • Anne S. Meyer
    • 2
  1. 1.Novozymes A/SBagsvaerdDenmark
  2. 2.Department of Chemical EngineeringTechnical University of DenmarkLyngbyDenmark

Personalised recommendations