Applied Biochemistry and Biotechnology

, Volume 142, Issue 3, pp 276–290

Potential of Agricultural Residues and Hay for Bioethanol Production

  • Ye Chen
  • Ratna R. Sharma-Shivappa
  • Deepak Keshwani
  • Chengci Chen
Article

Abstract

Production of bioethanol from agricultural residues and hays (wheat, barley, and triticale straws, and barley, triticale, pearl millet, and sweet sorghum hays) through a series of chemical pretreatment, enzymatic hydrolysis, and fermentation processes was investigated in this study. Composition analysis suggested that the agricultural straws and hays studied contained approximately 28.62–38.58% glucan, 11.19–20.78% xylan, and 22.01–27.57% lignin, making them good candidates for bioethanol production. Chemical pretreatment with sulfuric acid or sodium hydroxide at concentrations of 0.5, 1.0, and 2.0% indicated that concentration and treatment agent play a significant role during pretreatment. After 2.0% sulfuric acid pretreatment at 121°C/15 psi for 60 min, 78.10–81.27% of the xylan in untreated feedstocks was solubilized, while 75.09–84.52% of the lignin was reduced after 2.0% sodium hydroxide pretreatment under similar conditions. Enzymatic hydrolysis of chemically pretreated (2.0% NaOH or H2SO4) solids with Celluclast 1.5 L–Novozym 188 (cellobiase) enzyme combination resulted in equal or higher glucan and xylan conversion than with Spezyme® CP- xylanase combination. The glucan and xylan conversions during hydrolysis with Celluclast 1.5 L–cellobiase at 40 FPU/g glucan were 78.09 to 100.36% and 74.03 to 84.89%, respectively. Increasing the enzyme loading from 40 to 60 FPU/g glucan did not significantly increase sugar yield. The ethanol yield after fermentation of the hydrolyzate from different feedstocks with Saccharomyces cerevisiae ranged from 0.27 to 0.34 g/g glucose or 52.00–65.82% of the theoretical maximum ethanol yield.

Keywords

Chemical pretreatment Enzymatic hydrolysis Feedstocks Fermentation Glucan Lignin Xylan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albukh, T. (2000) http://hypertextbook.com/facts/2000/TanyaAlbukh.shtml, accessed June 20, 2006.
  2. 2.
    Um, B. H., Karim, M. N., & Henk, L. L. (2003). Applied Biochemistry and Biotechnology, 105–108, 115–125.CrossRefGoogle Scholar
  3. 3.
    Ingram, L. O., & Doran, J. B. (1995). FEMS Microbiology Reviews, 16, 235–241.CrossRefGoogle Scholar
  4. 4.
    McKendry, P. (2002). Bioresource Technology, 83, 47–54.CrossRefGoogle Scholar
  5. 5.
  6. 6.
    US EPA (2006) http://www.epa.gov/oecaagct/ag101/cropmajor.html, accessed July 1, 2006.
  7. 7.
    Chen, C., Johnson, D., & Wichman, D. (2005). The Western Society of Crop Science. Bozeman, MT, June 19–22, 2005.Google Scholar
  8. 8.
    Milne, T. A., Chum, H. L., Agblevor, F. A., & Johnson, D. K. (1992). Biomass & Bioenergy, 2, 341–366.CrossRefGoogle Scholar
  9. 9.
    Delgenes, J. P., Moletta, R., & Navarro, J. M. (1990). Process Biochemistry, 25, 132–135.Google Scholar
  10. 10.
    Detroy, R. W., Cunningham, R. L., & Herman, A. I. (1982). Biotechnology and Bioengineering Symposium, 12, 81–89.Google Scholar
  11. 11.
    Nigam, J. N. (2001). Journal of Biotechnology, 87(1), 17–27.CrossRefGoogle Scholar
  12. 12.
    Saha, B. C., & Cotta, M. A. (2006). Biotechnology Progress, 22(2), 449–453.CrossRefGoogle Scholar
  13. 13.
    Amartey, S., & Jeffries, T. W. (1996). World Journal of Microbiology & Biotechnology, 21, 281–283.CrossRefGoogle Scholar
  14. 14.
    Chang, V. S., Kaar, W. E., Burr, B., & Holtzapple, M. T. (2001). Biotechnology Letters, 23(16), 1327–1333.CrossRefGoogle Scholar
  15. 15.
    Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121–124, 1119–1131.CrossRefGoogle Scholar
  16. 16.
    Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005). Bioresource Technology, 96(18), 1986–1993.CrossRefGoogle Scholar
  17. 17.
    Parekh, S. R., Parekh, R. S., & Wayman, M. (1988). Enzyme and Microbial Technology, 10, 660–668.CrossRefGoogle Scholar
  18. 18.
    Varga, E., Schmidt, A. S., Reczey, K., & Thomsen, A. B. (2003). Applied Biochemistry and Biotechnology, 104(1), 37–50.CrossRefGoogle Scholar
  19. 19.
    Yang, B., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94(4), 611–617.CrossRefGoogle Scholar
  20. 20.
    Palmarola-Adrados, B., Choteborska, P., Galbe, M., & Zacchi, G. (2005). Bioresource Technology, 96, 843–850.CrossRefGoogle Scholar
  21. 21.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004a). Determination of total solids in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.Google Scholar
  22. 22.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004b). Determination of ash in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.Google Scholar
  23. 23.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004c). Determination of structural carbohydrates and lignin in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.Google Scholar
  24. 24.
    Han, J., & Rowell, J. (1997). In R. Rowell, R. Young, & J. Rowell (Eds.), Paper composites from agro-based resources (pp. 83–134). New York: CRC Lewis Publisher.Google Scholar
  25. 25.
    Chinn, M. S., Nokes, S. E., & Strobel, H. J. (2006). Biotechnology Progress, 22(1), 53–59.CrossRefGoogle Scholar
  26. 26.
    McMillan, J. D. (1994). In M. E. Himmel, J. O. Baker, & R. P. Overend (Eds.), Enzymatic conversion of biomass for fuels production (pp. 292–324). Washington, DC: American Chemical Society.Google Scholar
  27. 27.
    Agblevor, F. A., Evans, R. J., & Johnson, K. D. (1994). Journal of Analytical and Applied Pyrolysis, 30, 125–144.CrossRefGoogle Scholar
  28. 28.
    Agblevor, F. A., Batz, S., & Trumbo, J. (2003). Applied Biochemistry and Biotechnology, 105–108, 219–230.CrossRefGoogle Scholar
  29. 29.
    McDonald, P., Edwards, R. A., Greenhalgh, J. F. D., & Morgan, C. A. (1995). In 5th (Ed.), Animal nutrition (pp. 465–480). England: Longman Scientific & Technical.Google Scholar
  30. 30.
    Arroquy, J. I., Cochran, R. C., Nagaraja, T. G., Titgemeyer, E. C., & Johnson, D. E. (2005). Animal Feed Science and Technology, 120(1–2), 93–106.CrossRefGoogle Scholar
  31. 31.
    Thompson, D. N., Barnes, J. M., & Houghton, T. P. (2005). Applied Biochemistry and Biotechnology, 121–124, 21–46.CrossRefGoogle Scholar
  32. 32.
    Belkacemi, K., Turcotte, G., de Halleux, D., & Savoie, P. (1998). Applied Biochemistry and Biotechnology, 70–72, 441–462.CrossRefGoogle Scholar
  33. 33.
    Sun, Y., & Cheng, J. J. (2002). Bioresource Technology, 83(1), 1–11.CrossRefGoogle Scholar
  34. 34.
    Wiselogel, A., Tyson, S., & Johnson, D. (1996). In C. E. Wyman (Ed.), Handbook on bioethanol: Production and utilization (pp. 105–119). Washington, DC: Taylor & Francis.Google Scholar
  35. 35.
    Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Process Biochemistry, 40(12), 3693–3700.CrossRefGoogle Scholar
  36. 36.
    Sun, J. X., Xu, F., Sun, X. F., Xiao, B., & Sun, R. C. (2005). Polymer Degradation Stability, 88, 521–531.CrossRefGoogle Scholar
  37. 37.
    Schell, D. J., Farmer, J., Newman, M., & Mcmillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105, 69–86.CrossRefGoogle Scholar
  38. 38.
    Grohmann, K., Torget, R., & Himmel, M. (1985). Biotechnology and Bioengineering Symposium, 15, 59–80.Google Scholar
  39. 39.
    Akin, D. E., Hartley, R. D., Rigsby, L. L., & Morrison, W. H. (1992). Journal of the Science of Food and Agriculture, 58, 207–214.CrossRefGoogle Scholar
  40. 40.
    Simpson, A. J., Kingery, W. L., & Hatcher, P. G. (2003). Environmental Science & Technology, 37, 337–342.CrossRefGoogle Scholar
  41. 41.
    Jackson, M. G. (1977). Animal Feed Science and Technology, 2, 105–130.CrossRefGoogle Scholar
  42. 42.
    Scalbert, A., & Monties, B. (1986). Holzforschung, 40, 249–254.CrossRefGoogle Scholar
  43. 43.
    Gáspár, M., Juhász, T., Szengyel, Z., & Recaéy, K. (2005). Process Biochemistry, 40, 1183–1188.CrossRefGoogle Scholar
  44. 44.
    Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hagerdal, B., & Zacchi, G. (2006). Journal of Biotechnology, 126(4), 488–498.CrossRefGoogle Scholar
  45. 45.
    Amartey, S. A., Leung, P. C. J., Baghaei-Yazdi, N., Leak, D. J., & Hartley, B. S. (1999). Proceedings of Biochemistry, 34(3), 289–294.CrossRefGoogle Scholar
  46. 46.
    Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Biotechnology Progress, 17, 287–293.CrossRefGoogle Scholar
  47. 47.
    Mussatto, S. I., Santos, J. C., & Roberto, I. C. (2004). Journal of Chemical Technology and Biotechnology, 79(6), 590–596.CrossRefGoogle Scholar
  48. 48.
    Chung,Y.-C., Bakalinsky, A., & Penner, M. H. (2005). Applied Biochemistry and Biotechnology, 121–124, 947–961.CrossRefGoogle Scholar
  49. 49.
    Béguin, P., & Aubert, J.-P. (1994). FEMS Microbiology Reviews, 13, 25–58.CrossRefGoogle Scholar
  50. 50.
    Tengborg, C., Galbe, M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117.CrossRefGoogle Scholar
  51. 51.
    Bhat, M. K., & Bhat, S. (1997). Biotechnology Advances, 15(3/4), 583–620.CrossRefGoogle Scholar
  52. 52.
    Nieves, R. A., Ehrman, C. I., Adney, W. S., Elander, R. T., & Himmel, M. E. (1998). World Journal of Microbiology & Biotechnology, 14, 301–304.Google Scholar
  53. 53.
    Zhou, S., Davis, F. C., & Ingram, L. O. (2001). Applied and Environmental Microbiology, 67(1), 6–14.CrossRefGoogle Scholar
  54. 54.
    Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977.CrossRefGoogle Scholar
  55. 55.
    Spindler, D. D., Wyman, C. E., Grohmann, K., & Mohagheghi, A. (1989). Applied Biochemistry and Biotechnology, 20/21, 529–540.CrossRefGoogle Scholar
  56. 56.
    Spindler, D., Wyman, C., & Grohmann, K. (1990). Applied Biochemistry and Biotechnology, 24/25, 275–286.CrossRefGoogle Scholar
  57. 57.
    Kellett, L. E., Poole, D. M., Ferreira, L. M. A., Durrant, A. J., Hazlewood, G. P., & Gilbert, H. J. (1990). Biochemical Journal, 272(2), 369–376.Google Scholar
  58. 58.
    Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiology Reviews, 52, 305–317.Google Scholar
  59. 59.
    Thomson, J. A. (1993). FEMS Microbiology Reviews, 104, 65–82.CrossRefGoogle Scholar
  60. 60.
    Biely, P. (1985). Trends in Biotechnology, 3(11), 286–290.CrossRefGoogle Scholar
  61. 61.
    Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajo, J. C., & Girio, F. M. (2004). Applied Biochemistry and Biotechnology, 113–116, 1041–1058.CrossRefGoogle Scholar
  62. 62.
    Saddler, J. N., Yu, E. K. C., Mes-Hartree, M., Levitin, N., & Brownell, H. H. (1983). Applied and Environmental Microbiology, 45(1), 153–160.Google Scholar
  63. 63.
    Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000). Journal of Industrial Microbiology & Biotechnology, 25(4), 184–192.CrossRefGoogle Scholar
  64. 64.
    Ballesteros, M., Oliva, J. M., Negro, M. M., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848.CrossRefGoogle Scholar
  65. 65.
    Zhu, S. D., Wu, Y. X., Yu, Z. N., Zhang, X., Wang, C. W., Yu, F. Q., et al. (2006). Process Biochemistry, 41(4), 869–873.CrossRefGoogle Scholar
  66. 66.
    Boyle, M., Barron, N., & McHale, A. P. (1997). Biotechnology Letters, 19(1), 49–51.CrossRefGoogle Scholar
  67. 67.
    Bjerre, A. B., Olessen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577.CrossRefGoogle Scholar
  68. 68.
    D’Haese, D. E., Nelis, H. J., & Reybroeck, W. (1997). Applied Environmental and Microbiology, 63(10), 4116–4119.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Ye Chen
    • 1
  • Ratna R. Sharma-Shivappa
    • 1
  • Deepak Keshwani
    • 1
  • Chengci Chen
    • 2
  1. 1.Department of Biological and Agricultural EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Central Agricultural Research CenterMontana State UniversityMoccasinUSA

Personalised recommendations