Applied Biochemistry and Biotechnology

, Volume 142, Issue 2, pp 125–138 | Cite as

Immobilization of Xylanase from Bacillus pumilus Strain MK001 and its Application in Production of Xylo-oligosaccharides

  • Mukesh Kapoor
  • Ramesh Chander KuhadEmail author


Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0–10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 °C higher (68.0 °C) than free enzyme (60.0 °C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 °C. The immobilized xylanase registered marginal increase and decrease in K m and V max values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.


Bacillus pumilus Immobilization Xylanase Xylo-oligosaccharides 



The authors acknowledge the research grant from Department of Biotechnology, India. M.K is grateful to the Council of Scientific and Industrial Research for a grant of Senior Research Fellowship. The technical assistance provided by Mr. Manwar Singh is duly acknowledged.


  1. 1.
    Sunna, A., & Antranikian, G. (1997), Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17, 39–67.Google Scholar
  2. 2.
    Kuhad, R. C., Singh, A., & Eriksson, K.-E. L. (1997), Microorganisms and enzymes involved in the degradation of plant fiber cell wall. Advances in Biochemical Engineering/Biotechnologies, 57, 47–125.Google Scholar
  3. 3.
    Subramaniyan, S., & Prema, P. (2002), Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22, 33–64.CrossRefGoogle Scholar
  4. 4.
    Bajpai, P. (2004). Biological bleaching of pulps. Critical Reviews in Biotechnology, 24, 1–58.CrossRefGoogle Scholar
  5. 5.
    Kulkarni, N., Shendye, A., & Rao, M. (1999), Molecular and biotechnology aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456.CrossRefGoogle Scholar
  6. 6.
    Bhat, M. K. (2000), Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.CrossRefGoogle Scholar
  7. 7.
    Beg, Q. K., Kapoor, M., Bhushan, B., & Hoondal, G. S. (2001), Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.CrossRefGoogle Scholar
  8. 8.
    Okazaki, M., Fujikawa, S., & Matsumoto, N. (1990), Effect of xylooligosaccharide on the growth of Bifidobacteria. Bifidobacteria Microflora, 9, 77–86.Google Scholar
  9. 9.
    Krajewska, B. (2004), Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35, 126–139.CrossRefGoogle Scholar
  10. 10.
    Perry, J., & Wetzel, R. (1984), Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science, 226, 555–557.CrossRefGoogle Scholar
  11. 11.
    Imanaka, T., Shibazaki, M., & Takagi, M. (1986), A new way of enhancing the thermostability of proteases. Nature, 324, 695–697.CrossRefGoogle Scholar
  12. 12.
    Braxton, S., & Wells, J. (1992), Incorporation of a stabilizing Ca2Cbinding loop into subtilisin BPN. Biochemist, 31, 7796–7801.CrossRefGoogle Scholar
  13. 13.
    Zaborsky, O. (1973), Introduction. Weast R. C. ed., Ohio, pp. 1–2.Google Scholar
  14. 14.
    Rogalski, J., Szczodrak, J., Dawidowicz, A., Ilczuk, Z., & Leonowica, A. (1985), Immobilization of cellulase and d-xylanase complexes from Aspergillus terrus F-413 on controlled porosity glasses. Enzyme and Microbial Technology, 7, 395–400.CrossRefGoogle Scholar
  15. 15.
    Abdel-Naby, M. A. (1993), Immobilization of Aspergillus niger NRC 107 xylanase and β-xylosidase, and properties of the immobilized enzymes. Applied Biochemistry and Biotechnology, 38, 69–81.CrossRefGoogle Scholar
  16. 16.
    Tyagi, R., & Gupta, M. N. (1995), Immobilization of Aspergillus niger xylanase on magnetic latex beads. Biotechnology and Applied Biochemistry, 21, 217–222.Google Scholar
  17. 17.
    Dumitriu, S., & Chornet, E. (1997), Immobilization of xylanase in chitosan-xanthan hydrogels. Biotechnology Progress, 13, 539–545.CrossRefGoogle Scholar
  18. 18.
    Gouda, M. K., & Abdel-Naby, M. A. (2002), Catalytic properties of the immobilized Aspergillus tamarii xylanase. Microbiological Research, 157, 275–281.CrossRefGoogle Scholar
  19. 19.
    Ai, Z., Jaing, Z., Li, L., Deng, W., Kusakabe, I., & Li, H. (2005), Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochemistry, 40, 2707–2714.CrossRefGoogle Scholar
  20. 20.
    Sharma, K. K., Kapoor, M., & Kuhad, R. C. (2005), In-vivo enzymatic digestion (IVED), In-vitro xylanase digestion (IVXD), metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Letters in Applied Microbiology, 41, 24–31.CrossRefGoogle Scholar
  21. 21.
    Miller, G. L. (1959), Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  22. 22.
    Lowry, O. H., Rosebrough, N. J., Farr, A. C., & Randall, R. J. (1951), Protein measurement with Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.Google Scholar
  23. 23.
    Dubois, M., Gilles, K. A., Hamilton, I. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  24. 24.
    Roy, P. K., Roy, U., & Dube, D. (1984), Immobilized cellulolytic and hemicellulolytic enzymes from Macrophomina phaseolina. Journal of Chemical Technology and Biotechnology, 34, 165–170.Google Scholar
  25. 25.
    Ohtakara, A., & Mitsutomi, M. (1987), Immobilization of thermostable α-galactosidase from Pycnoporous cinnabarinus on chitosan beads and its application to the hydrolysis of raffinose in beet sugar molasses. Journal of Fermentation Technology, 65, 493–498.CrossRefGoogle Scholar
  26. 26.
    Woodward, J. (1984). Immobilised cells and enzymes—A practical approach. Washington DC: IRL Press Oxford.Google Scholar
  27. 27.
    Yang, D., & Rhee, J. S. (1992), Continuous hydrolysis of olive oil by immobilized lipase in organic solvent. Biotechnology and Bioengineering, 40, 748–752.CrossRefGoogle Scholar
  28. 28.
    Siso, M. J., Graber, M., Condoret, J.-M., & Combes, D. (1990), Effect of diffusional resistances on the action pattern of immobilized alpha-amylase. Journal of Chemical Technology and Biotechnology, 48, 185–200.Google Scholar
  29. 29.
    Dessouki, A. M., Issa, G. I., & Atia, K. S. (2001), Pullulanase immobilization on natural and synthetic polymers. Journal of Chemical Technology and Biotechnology, 76, 700–706.CrossRefGoogle Scholar
  30. 30.
    Dessouki, A. M., & Atia, K. S. (2000), Immobilization of adenosine deaminase onto agarose and casein. Biomacromolecules, 3, 432–437.CrossRefGoogle Scholar
  31. 31.
    Sardara, M., Roy, I., & Gupta, M. N. (2000), Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer Eudragit TM L-100. Enzyme and Microbial Technology, 27, 672–679.CrossRefGoogle Scholar
  32. 32.
    Bimachi, D., Golini, P., Bortolo, R., Battistel, E., Tassinari, R., & Cesti, P. (1997), Immobilization of glutaryl-7-ACA acylase on aminoalkylated polyacrylic supports. Enzyme and Microbial Technology, 20, 368–372.CrossRefGoogle Scholar
  33. 33.
    Abdel-Naby, M. A., Sherif, A. A., EL-Tanash, A. B., & Mankarios, A. T. (1999), Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. Journal of Applied Microbiology, 87, 108–114.CrossRefGoogle Scholar
  34. 34.
    Chang, T. M. S. (1964), Semi permeable microcapsules. Science, 146, 524–625.CrossRefGoogle Scholar
  35. 35.
    Mojovic, L., Knezevic, Z., Popadic, R., & Jovanovic, S. (1998), Immobilization of lipase from Candida rugosa on a polymer support. Applied Microbiology and Biotechnology, 50, 676–681.CrossRefGoogle Scholar
  36. 36.
    Krajewska, B., Leszko, M., & Zaborska, W. (1990), Urease immobilized on chitosan membrane: preparation and properties. Journal of Chemical Technology and Biotechnology, 48, 337–350.Google Scholar
  37. 37.
    Bissett, F., & Sternberg, D. (1978), Immobilization of Aspergillus beta-glucosidase on chitosan. Applied and Environmental Microbiology, 35, 750–755.Google Scholar
  38. 38.
    Dosanjh, N. S., & Kaur, J. (2002), Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnology and Applied Biochemistry, 36, 7–12.CrossRefGoogle Scholar
  39. 39.
    Rosevear, A. (1984), Immobilised biocatalysts — a critical review. Journal of Chemical Technology and Biotechnology, 34, 127–150.Google Scholar
  40. 40.
    Klibanov, A. M. (1979), Enzyme stabilization by immobilization. Analytical Biochemistry, 93, 1–25.CrossRefGoogle Scholar
  41. 41.
    Gomez, L., Ramýrez, H., Neira-Carrillo, A., & Villalonga, R. (2006), Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin. Bioprocess and Biosystems Engineering, 28, 387–395.CrossRefGoogle Scholar
  42. 42.
    Munjal, N., & Sawhney, S. K. (2002), Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbial Technology, 30, 613–619.CrossRefGoogle Scholar
  43. 43.
    Guilbault, G. G. (1984). In G. G. Guilbault (Ed.), Analytical uses of immobilized enzymes (pp. 77–164). New York: Marcel Dekker.Google Scholar
  44. 44.
    Gawande, P. V., & Kamat, M. Y. (1999), Purification of Aspergillus sp. xylanase by precipitation with an anionic polymer Eudragit S-100. Process Biochemistry, 34, 572–580.CrossRefGoogle Scholar
  45. 45.
    Edward, V. A., Pillay, V. L., Swart, P., & Singh, S. (2002), Immobilization of xylanase from Thermomyces lanuginosus SSBP using Eudragit S-100. South African Journal of Science, 98, 553–554.Google Scholar
  46. 46.
    Xu, Z.-H., Bai, Y.-L., Xu, X., Shi, J.-S., & Tao, W.-Y. (2005), Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate. World Journal of Microbiology and Biotechnology, 21, 575–581.CrossRefGoogle Scholar
  47. 47.
    Gawande, P. V., & Kamat, M. Y. (1998), Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100. Journal of Biotechnology, 66, 165–175.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Lignocellulose Biotechnology Laboratory, Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations