Applied Biochemistry and Biotechnology

, Volume 142, Issue 2, pp 139–147 | Cite as

Enhanced Expression and Primary Purification of Soluble HBD3 Fusion Protein in Escherichia coli

  • Lei Huang
  • Zhinan Xu
  • Zhixia Zhong
  • Li Peng
  • Haiqin Chen
  • Peilin Cen
Article

Abstract

Human β-defensin-3(HBD3) is a low molecular weight cationic peptide with a broad antimicrobial spectrum. A recombinant Escherichia coli (pET32-smHBD3) was constructed to produce HBD3 fusion protein (TrxA-HBD3) before, but the productivity is relatively low. In the present work, the effects of different expression conditions were systematically investigated to improve the expression level of the fusion protein. With regard to the volumetric productivity, the optimal conditions were determined as follows: cultivation at 34 °C in MBL medium, induction at middle stage of the exponential growth phase with 0.4 mM isopropylthio-d-galactoside, and postinduction expression for 8 h. Under these conditions, the volumetric productivity of the fusion protein reached 2.55 g/L, i.e., 0.55 g mature HBD3/L, which was about 2.6 times of that obtained under the unoptimized conditions. And the target protein still maintained high solubility (≥97.9%) and accounted for 66% of the total soluble protein. A cationic exchange purification step was employed to obtain high-purity target protein (90%) with a recovery ratio of 78%. This soluble expression level of HBD3 fusion protein was the highest among all the reported literature and facilitated the development of high efficient purification of HBD3.

Keywords

Antimicrobial peptide Human β-defensin-3 Optimization Purification Soluble expression 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 30370039 & No. 20276066), The People’s Republic of China.

References

  1. 1.
    Ganz, T. (1999). Defensins and host defense. Science, 286, 420–421.CrossRefGoogle Scholar
  2. 2.
    Tang, Y. Q., Yuan, J., Osapay, G., Osapay, K., Tran, D., Miller, C. J., et al. (1999). A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science, 286, 498–502.CrossRefGoogle Scholar
  3. 3.
    Jia, H. P., Schutte, B. C., Schudy, A., Linzmeier, R., Guthmiller, J. M., Johnson, G. K., et al. (2001). Discovery of new human beta-defensins using a genomics-based approach. Gene, 263, 211–218.CrossRefGoogle Scholar
  4. 4.
    Schutte, B. C., Mitros, J. P., Bartlett, J. A., Walters, J. D., Jia, H. P., Welsh, M. J., et al. (2002). Discovery of five conserved â-defensin gene clusters using a computational search strategy. Proceedings of the National Academy of Sciences United States of America, 99, 2129–2133.CrossRefGoogle Scholar
  5. 5.
    Harder, J., Bartels, J., Christophers, E., & Schroder, J. M. (2001). Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. Journal of Biological Chemistry, 276, 5707–5713.CrossRefGoogle Scholar
  6. 6.
    García, J. R., Krause, A., Schulz, S., Rodríguez-Jiménez, F. J., Klüver, E., Adermann, K., et al. (2001). Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB Journal, 15, 1819–1821.Google Scholar
  7. 7.
    Harder, J., Bartels, J., Christophers, E., & Schröder, J. M. (1997). A peptide antibiotic from human skin. Nature, 387, 861.CrossRefGoogle Scholar
  8. 8.
    Bals, R., Wang, X., Wu, Z., Freeman, T., Bafna, V., Zasloff, M., et al. (1998). Human β-Defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. Journal of Clinical Investigation, 102, 874–880.Google Scholar
  9. 9.
    Davis, G. D., Elisee, C., Newham, D. M., & Harrison, R. G. (1999). New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnology and Bioengineering, 65, 382–388.CrossRefGoogle Scholar
  10. 10.
    Villaverde, A., & Carrio, M. M. (2003). Protein aggregation in recombinant bacteria: Biological role of inclusion bodies. Biotechnology Letters, 25, 1385–1395.CrossRefGoogle Scholar
  11. 11.
    Chen, H. Q., Xu, Z. N., Xu, N. Z., & Cen, P. L. (2005). Efficient production of a soluble fusion containing human beta-defensin-2 in E. coli cell-free system. Journal of Biotechnology, 115, 307–315.CrossRefGoogle Scholar
  12. 12.
    Huang, L., Wang, J. F., Zhong, Z. X., Peng, L., Chen, H. Q., Xu, Z. N., et al. (2006). Production of bioactive human beta-defensin-3 in Escherichia coli by soluble fusion expression. Biotechnology Letters, 28, 627–632.CrossRefGoogle Scholar
  13. 13.
    Peng, L., Xu, Z. N., Fang, X. M., Wang, F., Yang, S., & Cen, P. L. (2004). Preferential codons enhancing the expression level of human beta-defensin-2. Protein Peptide Letters, 11, 339–344.CrossRefGoogle Scholar
  14. 14.
    Peng, L., Xu, Z. N., Fang, X. M., Wang, F., & Cen, P. L. (2004). High-level expression of soluble human β-defensin-2 in Escherichia coli. Process Biochemistry, 39, 2199–2205.CrossRefGoogle Scholar
  15. 15.
    Wang, F., Fang, X. M., Xu, Z. N., Peng, L., & Cen, P. L. (2004). Fusion expression of human beta-defensin-2 from multiple joined genes in Escherichia coli. Preparative Biochemistry and Biotechnology, 34, 215–225.CrossRefGoogle Scholar
  16. 16.
    Xu, Z. N., Wang, F., Peng, L., Fang, X. M., & Cen, P. L. (2005). Expression of human beta-defensin-2 with multiple joined genes in Escherichia coli. Applied Biochemistry and Biotechnol, 120, 1–14.CrossRefGoogle Scholar
  17. 17.
    Xu, Z. N., Chen, H. Q., Xu, N. Z., & Cen, P. L. (2005). Production of human beta-defensin-2 fused with GFP in E. coli cell-free system. Applied Biochemistry and Biotechnology, 127, 53–62.CrossRefGoogle Scholar
  18. 18.
    Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual, 3rd edition. New York: Cold Spring Harbor Laboratory Press.CrossRefGoogle Scholar
  19. 19.
    Bradford, M. M. (1976). A rapid and sensitive method for the qualititation of microgram quantities of protein utilizing the principle of protein-dying binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  20. 20.
    Sivakesava, S., Xu, Z. N., Chen, Y. H., Hackett, J., Huang, R. C., Lam, E., et al. (1999). Production of excreated human epidermal growth factor (hEGF) by an efficient recombinant Escherichia coli system. Process Biochemistry, 34, 893–900.CrossRefGoogle Scholar
  21. 21.
    Xu, Z. N., Liu, G., Cen, P. L., & Wong, W. K. R. (2000). Factors influencing secretive production of human epidermal growth factor (hEGF) with recombinant E. coli K12. Bioprocess Engineering, 23, 669–674.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lei Huang
    • 1
  • Zhinan Xu
    • 1
  • Zhixia Zhong
    • 1
  • Li Peng
    • 1
  • Haiqin Chen
    • 1
  • Peilin Cen
    • 1
  1. 1.Institute of Bioengineering, Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations